Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КИТ2 Модуль 1 .docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
763.93 Кб
Скачать
    1. Объектно-реляционная модель данных

В связи со значительным усложнением приложений появилась новая модель – расширенная реляционная модель (ExtendedRelationDataModel –ERDM).Эта модель включила в себя основные достоинства объектно-ориентированной модели и одновременно унаследовала простоту структуры реляционных моделей, и потому стала называться объектно-реляционной моделью данных.

В отличие от объектно-ориентированной модели (OODM) объектно-реляционная модель (ERDM) основана на стратегии реляционной модели, в то время как OODM модель основана на объектной стратегии. Исходя из этого, модель ERDM наиболее приспособлена для бизнес-приложений, а модель OODM используется в специальных инженерных и научных приложениях. Некоторые специалисты полагают, что в будущем произойдет слияние OODM и ERDM моделей.

Однако у объектно-реляционной и объектно-ориентированной моделей есть и ряд недостатков, основные из которых следующие:

  • Отсутствие унифицированной теории, которая есть в реляционных моделях;

  • Отсутствие формальной методологии проектирования баз данных, как нормализация в реляционных базах;

  • Отсутствие специальных средств создания запросов;

  • Отсутствие общих правил определения целостности и др.

    1. Многомерная модель

Многомерный подход к представлению данных в базе появился практически одновременно с реляционным, но реально работающих многомерных СУБД до настоящего времени было очень мало.

В развитии концепций информационных систем можно выделить следующие два направления:

  • Системы оперативной (транзакционной) обработки;

  • Системы аналитической обработки (системы поддержки принятия решений).

Реляционные СУБД предназначались для информационных систем оперативной обработки информации и в этой области были весьма эффективны. В системах аналитической обработки они показали себя несколько неповоротливыми и недостаточно гибкими. Более эффективными здесь оказываются многомерные СУБД.

Информация в многомерной моделипредставляется в виде многомерных массивов, называемых гиперкубами. В одной базе данных, построенной на многомерной модели, может храниться множество таких кубов, на основе которых можно проводить совместный анализ показателей. Конечный пользователь в качестве внешней модели данных получает для анализа определенные срезы или проекции кубов, представляемые в виде обычных двумерных таблиц или графиков.

Рисунок 8. Пример трехмерной модели

В современных многомерных системах используется обычно два варианта (схемы) организации данных: гиперкубическая и поликубическая.

В гиперкубической схеме все показатели определяются одним и тем же набором измерений и даже при наличии нескольких гиперкубов в базе все они имеют одинаковую размерность и совпадающие измерения.

При поликубической организации в базе может быть определено несколько гиперкубов с различной размерностью и с различными измерениями в качестве граней.

 Основные понятия многомерной модели

Измерение (Dimension) – это множество однотипных данных, образующих одну из граней гиперкуба. Примерами наиболее часто используемых временных измерений являются Дни, Месяцы, Кварталы и Годы. В качестве географических измерений широко употребляются Города, Районы, Регионы и Страны. В многомерной модели данных измерения играют роль индексов, служащих для идентификации конкретных значений в ячейках гиперкуба.

Ячейка (Cell) или показатель – это поле, значение которого однозначно определяется фиксированным набором измерений. Тип поля чаще всего определен как цифровой. В зависимости от того, как формируются значения некоторой ячейки, обычно она может быть переменной (значения изменяются и могут быть загружены из внешнего источника данных или сформированы программно) либо формулой (значения, подобно формульным ячейкам электронных таблиц, вычисляются по заранее заданным формулам).

Агрегируемостъ данных означает рассмотрение информации на различных уровнях ее обобщения. В информационных системах степень детальности представления информации для пользователя зависит от его уровня: аналитик, пользователь-оператор, управляющий, руководитель.

Историчность данных предполагает обеспечение высокого уровня статичности (неизменности) собственно данных и их взаимосвязей, а также обязательность привязки данных ко времени.

Статичность данных позволяет использовать при их обработке специализированные методы загрузки, хранения, индексации и выборки.

Временная привязка данных необходима для частого выполнения запросов, имеющих значения времени и даты в составе выборки. Необходимость упорядочения данных по времени в процессе обработки и представления данных пользователю накладывает требования на механизмы хранения и доступа к информации. Так, для уменьшения времени обработки запросов желательно, чтобы данные всегда были отсортированы в том порядке, в котором они наиболее часто запрашиваются.

Прогнозируемость данных подразумевает задание функций прогнозирования и применение их к различным временным интервалам.

Для многомерной модели применяются специальные операции: Срез, Сечение, Вращение, Агрегация, Детализация.

Срез – это подмножество гиперкуба, полученное в результате фиксации одного или нескольких измерений.

Вращение изменяет порядок измерений при визуальном представлении данных. Вращение применяется обычно при двумерном представлении данных.

Агрегация и Детализация означают соответственно переход к более общему и более детальному представлению данных.

Достоинством многомерной модели является удобство и эффективность анализа больших объемов данных, имеющих временную связь, а также быстрота реализации сложных нерегламентированных запросов. Недостаток этой модели в громоздкости в случае ее использования для решения стандартных задач оперативной обработки. Она, по сравнению с реляционными, не эффективно использует память, так как в ней резервируется место для всех значений, даже если некоторые из них будут отсутствовать. Обычно многомерную модель применяют, когда объем базы не велик и гиперкуб использует стабильный по времени набор измерений.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]