
- •Глава 1. Аппаратура и методы регистрации энергетического распределения вторичных электронов 7
- •Глава 2. Экспериментальное оборудование 26
- •Глава 3. Обработка спектров 41
- •Введение
- •Раздел а. Теоретические сведения
- •Глава 1. Аппаратура и методы регистрации энергетического распределения вторичных электронов
- •1.1. Поверхностная чувствительность методов электронной спектроскопии
- •1.2. Оборудование для создания сверхвысокого вакуума
- •1.4. Анализ энергии в электронной спектроскопии
- •1.5. Источники электронов и ионов
- •1.6. Электронные спектрометры
- •Глава 2. Экспериментальное оборудование
- •2.1. Описание экспериментальной установки
- •2.2. Описание виртуальной установки
- •2.3. Программа тестирования
- •Глава 3. Обработка спектров
- •3.1. Компьютерная обработка электронных спектров
- •3.2. Работа с пакетом программ origin
- •1.2. Зависимость коэффициентов вторичной электронной эмиссии и упругого отражения от энергии первичных электронов
- •1.3. Порядок выполнения работы
- •1.4. Контрольные вопросы
- •Лабораторная работа 2 Электрическое дифференцирование кривой задержки вторичных электронов
- •2.1. Электрическое дифференцирование кривой задержки вторичных электронов
- •2.2. Влияние модуляции на интенсивность регистрируемых пиков
- •2.3. Порядок выполнения работы
- •2.4. Контрольные вопросы
- •Лабораторная работа 3 Изучение плазменных колебаний в твердом теле методом спектроскопии характеристических потерь энергии электронов
- •3.1. Спектроскопия характеристических потерь энергии электронов
- •3.2. Порядок выполнения работы
- •3.3. Контрольные вопросы
- •Лабораторная работа 4 Физические основы электронной оже-спектроскопии
- •4.1 Физические основы электронной оже-спектроскопии
- •4.2. Количественный анализ в электронной оже-спектроскопии
- •4.3. Вычитание фона в электронной спектроскопии
- •4.3. Порядок выполнения работы
- •4.4.Контрольные вопросы
- •Библиографический список
1.5. Источники электронов и ионов
В электронных спектрометрах, предназначенных для изучения спектра вторичных электронов, необходимы источники электронов, возбуждающих вторичную электронную эмиссию. Для целей очистки образцов и получения профилей распределения элементов по глубине необходимы источники ионов для травления поверхности. В современных комплексах для анализа поверхности часто в одной измерительной сверхвысоковакуумной камере размещены все необходимые источники для обеспечения комплексного исследования поверхности различными методами.
И
Рис. 9. Основные
блоки электронной пушки [12]
Электронная пушка состоит из трех основных блоков. Катодный узел служит для экстракции электронов, которые затем с помощью ускоряющих и фокусирующих электродов фокусируются в электронный луч. Отклоняющие пластины позволяют отклонять электронный луч в горизонтальном и вертикальном направлениях, тем самым, обеспечивая попадание луча в заданную точку поверхности образца. Подача на эти пластины пилообразных напряжений горизонтальной и вертикальной разверток позволяет разворачивать электронный луч в растр по поверхности образца.
В большинстве электронных пушек для получения электронов используют термоэмиссионные катоды. Прямонакальные катоды изготавливают из проволоки чистых металлов (вольфрам, тантал и др.), которой часто придают V-образную форму. Пропусканием электрического тока нагревают эти катоды до температуры, при которой электроны покидают материал катода в результате явления термоэлектронной эмиссии. Вольфрамовые катоды, например, работают при температурах 2500 2700 К. При более низких температурах работают подогревные оксидные катоды, катоды из гексаборида лантана (LaB6) и др. До рабочей температуры эти катоды нагреваются внешним нагревателем. Недостатком оксидных катодов является то, что они не выдерживают многократного воздействия воздуха. Этого недостатка нет у металлопористых пропитанных (импрегнированных) катодов [5].
В некоторых промышленных источниках электронов используют автоэмиссионные катоды, испускание электронов в которых осуществляется под влиянием внешнего электрического поля в результате явления автоэлектронной эмиссии. Автоэмиссионные катоды позволяют получать интенсивные электронные пучки со значительно меньшим диаметром, чем термоэмиссионные катоды [3, 5].
Формирование электронного пучка осуществляется системой электростатических или магнитных линз. Наиболее распространенными являются электронные пушки с электростатической фокусировкой. Упрощенная схема электронной пушки с электростатической фокусировкой представлена на рис. 10.
Рис. 10.
Упрощенная схема электронной пушки с
электростатической фокусировкой
На этой схеме показан катод с внешним подогревателем в виде нити накала. Модулятор предназначен для регулировки тока первичных электронов. Два анода и фокусирующий электрод образуют электростатическую линзу, с помощью которой формируется узкий пучок электронов с заданной энергией. После прохождения через отклоняющие пластины электроны через дополнительный электрод, называемый «носом» электронной пушки, выходят в аналитическую камеру спектрометра.
Энергия первичных электронов зависит от приложенной разности потенциалов между катодом и анодом электронной пушки и определяется задачами эксперимента. В электронной оже-спектроскопии, например, максимальное сечение ионизации внутренних оболочек атомов электронным ударом имеет место при энергии первичных электронов в 3 … 5 раз превышающей энергию ионизации соответствующего атомного уровня [1]. Например, энергия связи 1s электронов в кислороде составляет приблизительно 515 эВ, поэтому для получения максимальной интенсивности О KLL-пика оже-электронов необходима энергия первичных электронов не ниже 1500 эВ. Большинство промышленных электронных спектрометров работают при энергии первичных электронов от 3 до 10 кэВ.
Источники ионов. Источники ионов размещаются в сверхвысоковакуумной камере электронного спектрометра для предварительной очистки поверхности образца, а также для использования ионного травления в послойном анализе.
Простейшие ионные пушки используют конфигурацию обычного ионизационного манометра (рис. 11).
Т
Рис. 11. Конструкция
ионной пушки, использующей геометрию
ионизационного манометра [3]
Ионная пушка, использующая геометрию ионизационного манометра, не может создавать ионный пучок диаметром меньше 3 мм. Для фокусировки ионного пучка к системе электродов, изображенной на рис. 11, добавляют фокусирующие электроды или фокусирующую систему линз. После фокусирующей системы линз часто ставят отклоняющие пластины, подобные тем, что используются в электронных пушках, что позволяет производить сканирование ионным пучком области травления поверхности образца.
В более совершенных ионных пушках используется высоковольтный газовый разряд. Аргон вводится непосредственно в разрядный промежуток, из которого вытягивается и формируется узкий ионный пучок с необходимой энергией. Ускоряющее напряжение ионов может достигать в таких пушках 10 кВ. Рабочий ток зависит от давления в аналитической камере. Например, при давлении порядка 10-6 Торр ток ионного пучка может достигать 200 мкА [3].
Преимущество ионных источников, использующих высоковольтный газовый разряд, кроме возможности получения более интенсивных ионных пучков, связано также с тем, что нет необходимости заполнять аргоном всю рабочую камеру, как это делается при использовании ионной пушки, использующей геометрию ионизационного манометра.