
- •Статистика
- •О.В. Рудакова,
- •Введение
- •Раздел 1 описательная статистика
- •Глава 1. Статистическое наблюдение
- •1.1. Основные понятия
- •1.2. Тест
- •1. Объект статистического наблюдения – это:
- •2. Субъект, от которого поступают данные в ходе статистического наблюдения, называется:
- •Глава 2. Статистическая сводка и группировка
- •2.1. Основные понятия
- •1) По формуле Стерджесса:
- •2100–9100 – 1-Я группа;
- •9100–16100 – 2-Я группа;
- •16100–23100 – 3-Я группа.
- •2.3.2 Задачи
- •Глава 3. Статистические показатели
- •3.1. Основные понятия
- •3.3.2 Задачи
- •Глава 4. Средние величины
- •4.1. Основные понятия
- •4.3.2 Задачи
- •Раздел 2 аналитическая статистика
- •Глава 5. Показатели вариации
- •5.1. Основные понятия
- •5.2. Тест
- •1. Вариация – это:
- •2. К абсолютным показателям вариации не относятся:
- •5.3.2 Задачи
- •Глава 6. Ряды динамики
- •6.1. Основные понятия
- •6.3.2. Задачи
- •Глава 7. Экономические индексы
- •7.1. Основные понятия
- •7.3.2. Задачи
- •Глава 8. Выборочное наблюдение
- •8.1. Основные понятия
- •8.3.2. Задачи
- •Глава 9. Статистическое изучение взаимосвязи социально-экономических явлений
- •9.1. Основные понятия
- •9.3.2. Задачи
- •Раздел 3 социально-экономическая статистика
- •Глава 10. Статистика национального богатства. Статистика основных фондов
- •10.1. Основные понятия
- •С точки зрения накопленного капитала национальное богатство включает:
- •5. Какими показателями может характеризоваться наличие основных фондов?
- •6. Какие виды оценки основных фондов используются в практике учета и статистики?
- •7. Как определяется показатель фондоотдачи основных фондов?
- •8. Как определяется показатель фондовооруженности?
- •Глава 11. Статистика цен
- •11.1. Основные понятия
- •11.3 Задачи
- •Глава 12. Статистика населения
- •12.1. Основные понятия
- •12.3.2 Задачи
- •Глава 13. Статистика рынка труда
- •13.1. Основные понятия
- •Глава 14. Статистика уровня жизни населения
- •14.1. Основные понятия
- •Заключение
- •Литература
8.3.2. Задачи
1. В акционерном обществе 200 бригад рабочих. Планируется проведение выборочного обследования с целью определения удельного веса рабочих, имеющих профессиональные заболевания. Известно, что межсерийная дисперсия доли равна 225. С вероятностью 0,954 (t = 2) рассчитайте необходимое количество бригад для обследования рабочих, если ошибка выборки не должна превышать 5 %.
2. Каким должен быть объём случайной бесповторной выборки из генеральной совокупности численностью 10000 единиц при среднем квадратическом отклонении не более 20, предельной ошибке, не превышающей 5 %, и вероятности 0,997 (t = 3).
3. Из партии импортируемой продукции на посту таможни было взято в порядке случайной бесповторной выборки 20 проб продукта А. В результате проверки установлена средняя влажность продукта А в выборке, которая оказалась равной 6 % при среднем квадратическом отклонении 1 %. С вероятностью 0,683 (t = 1) определите пределы средней влажности продукта во всей партии импортируемой продукции.
4. С целью определения средних затрат времени при поездках на работу населением города планируется выборочное обследование на основе случайного повторного отбора. Сколько людей должно быть обследовано, чтобы с вероятностью 0,954 (t = 2) ошибка выборочной средней не превышала 1 мин. при среднем квадратическом отклонении 15 мин.
5. В
одном из лесничеств области методом
случайной выборки обследовано
1000 деревьев с целью установления их
среднего диаметра, который оказался
равным 210 мм при
мм.
С вероятностью 0,683 (t = 1)
определите пределы среднего диаметра
деревьев в генеральной совокупности.
6. Из партии в 1 млн шт. мелкокалиберных патронов путем случайного отбора взято для определения дальности боя 1000 шт. Результаты испытаний представлены в таблице 8.3.
Таблица 8.3 – Распределение мелкокалиберных патронов по дальности боя
Дальность боя, м |
Число патронов, шт. |
25 |
120 |
30 |
180 |
35 |
280 |
40 |
170 |
45 |
140 |
50 |
110 |
Итого: |
1000 |
С вероятностью 0,954 (t = 2) определите среднюю дальность боя по выборке, ошибку выборки и возможные пределы средней дальности боя всей партии патронов.
7. В порядке механической выборки обследован возраст 100 студентов вуза из общего числа 2000 человек. Результаты обработки материалов наблюдения приведены в таблице 8.4.
Таблица 8.4 – Распределение студентов вуза по возрасту на 15.09.12 г.
Возраст студентов, лет |
Число студентов, чел. |
Возраст студентов, лет |
Число студентов, чел. |
17 |
11 |
21 |
14 |
18 |
13 |
22 |
8 |
19 |
20 |
23 |
6 |
20 |
22 |
24 |
3 |
Установите:
а) средний возраст студентов вуза по выборке;
б) величину ошибки при определении возраста студентов на основании выборки;
в) вероятные пределы колебания возраста для всех студентов при вероятности 0,997 (t = 3).
8. С целью определения средней фактической продолжительности рабочего дня в государственном учреждении с численностью служащих 480 человек в июне 2010 г. была проведена 25%-я механическая выборка. По результатам наблюдения оказалось, что у 10% обследованных потери времени достигали более 45 мин. в день. С вероятностью 0,683 (t = 1) установите пределы, в которых находится генеральная доля служащих с потерями рабочего времени более 45 мин. в день.
9. В области, состоящей их 20 районов, проводилось выборочное обследование урожайности на основе отбора серий (районов). Выборочные средние по районам составили соответственно 14,5; 16; 15,5 и 14 ц/га. С вероятностью 0,954 (t = 2) найдите пределы урожайности во всей области.
10. В 100 туристических агентствах города предполагалось провести обследование среднемесячного количества реализованных путевок методом механического отбора. Какова должна быть численность выборки, чтобы с вероятностью 0,683 ошибка не превышала три путевки, если по данным пробного обследования дисперсия составляет 225?