
- •Тема 1. Предмет и метод статистики. Источники статистической информации 10
- •Тема 2. Сводка и группировка 32
- •Тема 3. Статистические таблицы и графики 44
- •Тема 9. Статистические методы изучения взаимосвязей 149
- •Введение
- •Тема 1. Предмет и метод статистики. Источники статистической информации Лекция 1. Основные понятия и категории статистики
- •1.3. Категории статистики.
- •1.4. Особенности статистической методологии. Методы статистики.
- •1.5. Основные задачи и принципы организации государственной статистической службы в Российской Федерации
- •1.6. Источники статистической информации. Понятие статистического наблюдения. Виды статистического наблюдения.
- •1.7. Точность статистического наблюдения и ее контроль. Ошибки статистического наблюдения.
- •1.9. Программно-методологические вопросы статистического наблюдения
- •1.10. Организационный план статистического наблюдения.
- •Вопросы для самостоятельной работы
- •Тема 2. Сводка и группировка лекция 3. Сводка и группировка материалов статистического наблюдения
- •2.1. Понятие статистической сводки. Ряды распределения.
- •2.2. Понятие и виды группировок статистических данных
- •2.3. Техника и правила проведения группировки.
- •Вопросы для самостоятельной работы
- •Тема 3. Статистические таблицы и графики лекция 4. Понятие, виды и правила составления статистических таблиц
- •3.3. Правила построения, оформления, переноса таблиц, записи цифр.
- •3.1. Понятие и назначение статистических таблиц
- •3.2. Виды статистических таблиц
- •3.3. Правила построения, оформления, переноса таблиц, записи цифр.
- •Лекция 5. ГРаФический метод в статистике
- •3.4. Понятие и назначение статистических графиков
- •3.5. Классификация статистических графиков
- •1913 — 2004 Гг. В год на душу населения (в процентах к 1913 г.)
- •Вопросы для самостоятельной работы
- •4.2. Относительные статистические величины, их сущность и формы выражения.
- •4.3. Виды относительных величин.
- •4.4. Понятие и назначение средних величин в статистике
- •4.5. Средняя арифметическая и ее свойства.
- •Лекция 7. Виды и свойства средних в статистике
- •4.6. Средняя гармоническая.
- •4.7. Средняя геометрическая, средняя квадратическая, средняя хронологическая.
- •4.8. Структурные средние.
- •4.9. Робастные характеристики для оценки среднего арифметического.
- •Вопросы для самостоятельной работы
- •Тема 5. Показатели вариации лекция 8. Статистическая вариация и ее измерение
- •5.1. Понятие статистической вариации признаков. Назначение показателей вариации.
- •5.2. Абсолютные и средние показатели вариации и способы их расчета.
- •2) Определяются отклонения каждой варианты от средней ;
- •5.3. Расчет дисперсии и среднего квадратического отклонения по индивидуальным данным и в рядах распределения.
- •Лекция 9. Изучение важнейших свойств статистической вариации
- •5.4. Свойства дисперсии. Расчет дисперсии по формуле по индивидуальным данным и в рядах распределения.
- •5.5. Показатели относительного рассеивания.
- •5.6. Общая, межгрупповая и внутригрупповая дисперсии. Правило сложения дисперсий.
- •Вопросы для самостоятельной работы
- •Тема 6. Ряды динамики лекция 10. Понятие ряда динамики. Расчет показателей динамики
- •6.1. Ряды динамики и их виды. Установление вида ряда динамики.
- •6.2. Приведение рядов динамики к сопоставимому виду.
- •6.3. Показатели динамики.
- •6.4. Определение среднего абсолютного прироста, средних темпов роста и прироста.
- •Лекция 11. Анализ тенденций в рядах динамики
- •6.5. Определение в рядах динамики общей тенденции развития. Методы укрупненных и скользящих средних.
- •6.6. Метод аналитического выравнивания рядов динамики.
- •6.7. Определение в рядах внутригодовой динамики.
- •Вопросы для самостоятельной работы
- •Тема 7. Выборочное наблюдение лекция 12. Понятие выборочного наблюдения и ошибки выборки
- •7.1. Понятие выборочного наблюдения.
- •7.2. Понятие об ошибке выборки. Ошибки репрезентативности выборочного наблюдения.
- •7.3. Понятие предельной ошибки выборки.
- •Значение вероятности при разной величине коэффициента доверия t.
- •Лекция 13. Способы проведения и анализа выборочного наблюдения
- •7.4. Расчет необходимой численности выборки, доверительных интервалов выборочной оценки, вероятности осуществления заданной ошибки выборки.
- •7.5. Малая выборка. Способы распространения характеристик выборки на генеральную совокупность.
- •7.6. Способы отбора единиц из генеральной совокупности.
- •Вопросы для самостоятельной работы
- •Тема 8. Статистические индексы лекция 14. Понятие, виды и правила построения статистических индексов
- •8.1. Понятие и виды статистических индексов.
- •8.2. Агрегатные индексы.
- •8.3. Правила построения сводных индексов в агрегатной форме. Разновидности агрегатных индексов
- •2.2. Индекс посевной площади
- •8.5. Вычисление среднего индекса
- •8.6. Базисные и цепные индексы.
- •8.7. Индексы постоянного, переменного состава и структурных сдвигов.
- •Вопросы для самостоятельной работы
- •Тема 9. Статистические методы изучения взаимосвязей лекция 16. Понятие и методы изучения взаимосвязей
- •9.2. Методы изучения статистических связей.
- •9.1. Понятие статистической взаимосвязи. Виды и формы связей.
- •9.2. Методы изучения статистических связей.
- •9.3. Непараметрические методы изучения связей
- •Лекция 17. Корреляционно-регрессионный анализ
- •9.4. Однофакторный корреляционно-регрессионный анализ
- •9.5. Показатели тесноты статистической связи.
- •9.6. Многофакторный корреляционно-регрессионный анализ.
- •Вопросы для самостоятельной работы
- •Литература
- •Взаимосвязь индексов связанных явлений.
- •Вычисление среднего индекса
- •Методы изучения статистических связей.
9.3. Непараметрические методы изучения связей
Наиболее простым из них является вычисление коэффициента знаков Фехнера. Он рассчитывается по формуле:
C - сумма совпадающих знаков отклонений индивидуальных значений признака от средней.
H - сумма несовпадений
Данный коэффициент изменяется в пределах (-1;1).
Значение KF=0 свидетельствует об отсутствии зависимости между изучаемыми признаками.
Если KF=1, то это говорит о наличии функциональной прямой (+) и обратной (-) зависимости. При значении KF>0,6 делается вывод о наличии сильной прямой (обратной) зависимости между признаками.
Их еще называют ранговыми методами. Они связаны с расчетами различных коэффициентов. Применяются как отдельно, так и совместно с параметрическими. Особенно эффективны непараметрические методы, когда необходимо измерить связь между качественными признаками. Они проще в вычислении и не требуют никаких предположений о законе распределения исходных статистических данных, т.к. при их расчете оперируют не самими значениями признаков, а их рангами, частотами, знаками и т.д.
Коэффициенты ассоциации и контингенции
Для исследования взаимосвязи качественных альтернативных признаков, принимающих только 2 взаимоисключающих значения и состоящих только из двух групп, используется коэффициенты ассоциации и контингенции. При расчете этих коэффициентов составляется т.н. таблица 4-х камней.
Рассмотрим пример:
Таблица 54
Посещение |
Оценка |
Итого |
|
Неудовлетв. |
Положит. |
||
Посещали |
86 |
14 |
100 |
Не посещали |
22 |
28 |
50 |
Итого |
108 |
42 |
150 |
Перепишем данную таблицу, заменив обозначениями:
Таблица 55
Посещение |
Оценка |
Итого |
|
Неудовлетв. |
Положит. |
||
Посещали |
a |
b |
a + b |
Не посещали |
с |
d |
c + d |
Итого |
a + c |
b + d |
a + b+ c+ d |
Вычислим следующие коэффициенты:
1) коэффициент ассоциации
2) коэффициент контингенции
Коэффициент
контингенции всегда меньше коэффициента
ассоциации. Связь считается подтвержденной,
если
или
.
Если признаки имеют 3 или более градаций, то для изучения взаимосвязей используются коэффициенты Пирсена и Чупрова. Они рассчитываются по формулам:
С - коэффициент Пирсена
К - коэффициент Чупрова
- показатель взаимной сопряженности
K1 - число значений (групп) первого признака
K2 - число значений (групп) второго признака
fij - частоты соответствующих клеток таблицы
mi - столбцы таблицы
nj - строки
Для расчета коэффициентов Пирсена и Чупрова составляется вспомогательная таблица:
Таблица 56
Группа признака Y |
Группа признака X |
Итого: |
|||
1 |
2 |
... |
i |
||
1 |
f11 |
f12 |
... |
f1i |
n1 |
2 |
f21 |
f22 |
... |
f2i |
n2 |
... |
... |
... |
... |
... |
... |
j |
fji |
fj2 |
... |
fji |
nj |
Итого: |
m1 |
m2 |
... |
mi |
minj |
При ранжировании качественных признаков с целью изучения их взаимосвязи используется коэффициент корреляции Кэндалла.
n - число наблюдений
S - сумма разностей между числом последовательностей и числом инверcий по второму признаку.
S=P+Q
P - сумма значений рангов, следующих за данными и превышающих его величину
Q - сумма значений рангов, следующих за данными и меньших его величины (учитывается со знаком «-»).
При наличии связанных рангов формула коэффициента Кендалла будет следующей:
Vx и Vy определяются отдельно для рангов X и Y по формуле:
Коэффициент Спирмана (ранговый коэффициент)
Один из простых показателей тесноты корреляционной зависимости — показатель корреляции рангов. Разберем порядок вычисления этого показателя на примере.
Изучается товарооборот и суммы издержек обращения по ряду магазинов (в тыс. руб.). Данные представлены таблицей.
Таблица 57
№ магазина |
Товарооборот |
Издержки обращения |
1 |
480 |
30 |
2 |
510 |
25 |
3 |
530 |
31 |
4 |
540 |
28 |
5 |
570 |
29 |
6 |
590 |
32 |
7 |
620 |
36 |
8 |
640 |
36 |
9 |
650 |
37 |
10 |
660 |
38 |
Из таблицы видно, что с ростом товарооборота растут и издержки обращения.
Но в ряде случаев, как видно из той же таблицы, увеличение товарооборота ведет и к уменьшению издержек обращения, поскольку, помимо двух названных величин, в реальном процессе торговли участвуют и другие факторы, которые в рассмотрение не включены и носят случайный характер.
Рассмотрим критерий тесноты связи, названный показателем корреляции рангов. От величин абсолютных перейдем к рангам по такому правилу: самое меньшее значение — ранг 1, затем 2 и т.д. Если встречаются одинаковые значения, то каждое из них заменяется средним.
Итак:
Товарооборот |
Издержки |
1 |
4 |
2 |
1 |
3 |
5 |
4 |
2 |
5 |
3 |
6 |
6 |
7 |
7,5 |
8 |
7,5 |
9 |
9 |
10 |
10 |
Построим разности между рангами и возведем их в квадрат.
1. Если ранги совпадают, то ясно, что сумма их квадратов равна 0.
Связь полная, прямая.
2. Ранги образуют обратную последовательность
1 10
2 9 В этом
случае
3 8
. . Связь полная, обратная.
. .
. .
10 1
Показатель корреляции рангов определяется по формуле:
Показатель показывает, как отличается полученная при наблюдении сумма квадратов разностей между рангами от случая отсутствия связи.
Проанализируем показатель корреляции рангов.
1. Связь полная и
прямая,
и
2. Связь полная и
обратная,
и
3. Все остальные значения лежат между -1 и +1.
Построим показатель корреляции рангов для нашего примера:
Таблица 58
Товарооборот (ранг) |
Издержки (ранг) |
|
|
1 |
4 |
-3 |
9 |
2 |
1 |
1 |
1 |
3 |
5 |
-2 |
4 |
4 |
2 |
2 |
4 |
5 |
3 |
2 |
4 |
6 |
6 |
0 |
0 |
7 |
7,5 |
-0,5 |
0,25 |
8 |
7,5 |
0,5 |
0,25 |
9 |
9 |
0 |
0 |
10 |
10 |
0 |
0 |
|
|
|
|
Полученный показатель свидетельствует о достаточно тесной связи между товарооборотом и издержками.