Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Кувалкин А.В. Курс лекциий ч 2.DOC
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
3.07 Mб
Скачать

9.3. Непараметрические методы изучения связей

Наиболее простым из них является вычисление коэффициента знаков Фехнера. Он рассчитывается по формуле:

C - сумма совпадающих знаков отклонений индивидуальных значений признака от средней.

H - сумма несовпадений

Данный коэффициент изменяется в пределах (-1;1).

Значение KF=0 свидетельствует об отсутствии зависимости между изучаемыми признаками.

Если KF=1, то это говорит о наличии функциональной прямой (+) и обратной (-) зависимости. При значении KF>0,6 делается вывод о наличии сильной прямой (обратной) зависимости между признаками.

Их еще называют ранговыми методами. Они связаны с расчетами различных коэффициентов. Применяются как отдельно, так и совместно с параметрическими. Особенно эффективны непараметрические методы, когда необходимо измерить связь между качественными признаками. Они проще в вычислении и не требуют никаких предположений о законе распределения исходных статистических данных, т.к. при их расчете оперируют не самими значениями признаков, а их рангами, частотами, знаками и т.д.

Коэффициенты ассоциации и контингенции

Для исследования взаимосвязи качественных альтернативных признаков, принимающих только 2 взаимоисключающих значения и состоящих только из двух групп, используется коэффициенты ассоциации и контингенции. При расчете этих коэффициентов составляется т.н. таблица 4-х камней.

Рассмотрим пример:

Таблица 54

Посещение

Оценка

Итого

Неудовлетв.

Положит.

Посещали

86

14

100

Не посещали

22

28

50

Итого

108

42

150

Перепишем данную таблицу, заменив обозначениями:

Таблица 55

Посещение

Оценка

Итого

Неудовлетв.

Положит.

Посещали

a

b

a + b

Не посещали

с

d

c + d

Итого

a + c

b + d

a + b+ c+ d

Вычислим следующие коэффициенты:

1) коэффициент ассоциации

2) коэффициент контингенции

Коэффициент контингенции всегда меньше коэффициента ассоциации. Связь считается подтвержденной, если или .

Если признаки имеют 3 или более градаций, то для изучения взаимосвязей используются коэффициенты Пирсена и Чупрова. Они рассчитываются по формулам:

С - коэффициент Пирсена

К - коэффициент Чупрова

 - показатель взаимной сопряженности

K1 - число значений (групп) первого признака

K2 - число значений (групп) второго признака

fij - частоты соответствующих клеток таблицы

mi - столбцы таблицы

nj - строки

Для расчета коэффициентов Пирсена и Чупрова составляется вспомогательная таблица:

Таблица 56

Группа признака Y

Группа признака X

Итого:

1

2

...

i

1

f11

f12

...

f1i

n1

2

f21

f22

...

f2i

n2

...

...

...

...

...

...

j

fji

fj2

...

fji

nj

Итого:

m1

m2

...

mi

minj

При ранжировании качественных признаков с целью изучения их взаимосвязи используется коэффициент корреляции Кэндалла.

n - число наблюдений

S - сумма разностей между числом последовательностей и числом инверcий по второму признаку.

S=P+Q

P - сумма значений рангов, следующих за данными и превышающих его величину

Q - сумма значений рангов, следующих за данными и меньших его величины (учитывается со знаком «-»).

При наличии связанных рангов формула коэффициента Кендалла будет следующей:

Vx и Vy определяются отдельно для рангов X и Y по формуле:

Коэффициент Спирмана (ранговый коэффициент)

Один из простых показателей тесноты корреляционной зависимости — показатель корреляции рангов. Разберем порядок вычисления этого показателя на примере.

Изучается товарооборот и суммы издержек обращения по ряду магазинов (в тыс. руб.). Данные представлены таблицей.

Таблица 57

№ магазина

Товарооборот

Издержки обращения

1

480

30

2

510

25

3

530

31

4

540

28

5

570

29

6

590

32

7

620

36

8

640

36

9

650

37

10

660

38

Из таблицы видно, что с ростом товарооборота растут и издержки обращения.

Но в ряде случаев, как видно из той же таблицы, увеличение товарооборота ведет и к уменьшению издержек обращения, поскольку, помимо двух названных величин, в реальном процессе торговли участвуют и другие факторы, которые в рассмотрение не включены и носят случайный характер.

Рассмотрим критерий тесноты связи, названный показателем корреляции рангов. От величин абсолютных перейдем к рангам по такому правилу: самое меньшее значение — ранг 1, затем 2 и т.д. Если встречаются одинаковые значения, то каждое из них заменяется средним.

Итак:

Товарооборот

Издержки

1

4

2

1

3

5

4

2

5

3

6

6

7

7,5

8

7,5

9

9

10

10

Построим разности между рангами и возведем их в квадрат.

1. Если ранги совпадают, то ясно, что сумма их квадратов равна 0.

Связь полная, прямая.

2. Ранги образуют обратную последовательность

1 10

2 9 В этом случае

3 8

. . Связь полная, обратная.

. .

. .

10 1

Показатель корреляции рангов определяется по формуле:

Показатель показывает, как отличается полученная при наблюдении сумма квадратов разностей между рангами от случая отсутствия связи.

Проанализируем показатель корреляции рангов.

1. Связь полная и прямая, и

2. Связь полная и обратная, и

3. Все остальные значения лежат между -1 и +1.

Построим показатель корреляции рангов для нашего примера:

Таблица 58

Товарооборот (ранг)

Издержки (ранг)

1

4

-3

9

2

1

1

1

3

5

-2

4

4

2

2

4

5

3

2

4

6

6

0

0

7

7,5

-0,5

0,25

8

7,5

0,5

0,25

9

9

0

0

10

10

0

0

Полученный показатель свидетельствует о достаточно тесной связи между товарооборотом и издержками.