
- •Тема 1. Предмет и метод статистики. Источники статистической информации 10
- •Тема 2. Сводка и группировка 32
- •Тема 3. Статистические таблицы и графики 44
- •Тема 9. Статистические методы изучения взаимосвязей 149
- •Введение
- •Тема 1. Предмет и метод статистики. Источники статистической информации Лекция 1. Основные понятия и категории статистики
- •1.3. Категории статистики.
- •1.4. Особенности статистической методологии. Методы статистики.
- •1.5. Основные задачи и принципы организации государственной статистической службы в Российской Федерации
- •1.6. Источники статистической информации. Понятие статистического наблюдения. Виды статистического наблюдения.
- •1.7. Точность статистического наблюдения и ее контроль. Ошибки статистического наблюдения.
- •1.9. Программно-методологические вопросы статистического наблюдения
- •1.10. Организационный план статистического наблюдения.
- •Вопросы для самостоятельной работы
- •Тема 2. Сводка и группировка лекция 3. Сводка и группировка материалов статистического наблюдения
- •2.1. Понятие статистической сводки. Ряды распределения.
- •2.2. Понятие и виды группировок статистических данных
- •2.3. Техника и правила проведения группировки.
- •Вопросы для самостоятельной работы
- •Тема 3. Статистические таблицы и графики лекция 4. Понятие, виды и правила составления статистических таблиц
- •3.3. Правила построения, оформления, переноса таблиц, записи цифр.
- •3.1. Понятие и назначение статистических таблиц
- •3.2. Виды статистических таблиц
- •3.3. Правила построения, оформления, переноса таблиц, записи цифр.
- •Лекция 5. ГРаФический метод в статистике
- •3.4. Понятие и назначение статистических графиков
- •3.5. Классификация статистических графиков
- •1913 — 2004 Гг. В год на душу населения (в процентах к 1913 г.)
- •Вопросы для самостоятельной работы
- •4.2. Относительные статистические величины, их сущность и формы выражения.
- •4.3. Виды относительных величин.
- •4.4. Понятие и назначение средних величин в статистике
- •4.5. Средняя арифметическая и ее свойства.
- •Лекция 7. Виды и свойства средних в статистике
- •4.6. Средняя гармоническая.
- •4.7. Средняя геометрическая, средняя квадратическая, средняя хронологическая.
- •4.8. Структурные средние.
- •4.9. Робастные характеристики для оценки среднего арифметического.
- •Вопросы для самостоятельной работы
- •Тема 5. Показатели вариации лекция 8. Статистическая вариация и ее измерение
- •5.1. Понятие статистической вариации признаков. Назначение показателей вариации.
- •5.2. Абсолютные и средние показатели вариации и способы их расчета.
- •2) Определяются отклонения каждой варианты от средней ;
- •5.3. Расчет дисперсии и среднего квадратического отклонения по индивидуальным данным и в рядах распределения.
- •Лекция 9. Изучение важнейших свойств статистической вариации
- •5.4. Свойства дисперсии. Расчет дисперсии по формуле по индивидуальным данным и в рядах распределения.
- •5.5. Показатели относительного рассеивания.
- •5.6. Общая, межгрупповая и внутригрупповая дисперсии. Правило сложения дисперсий.
- •Вопросы для самостоятельной работы
- •Тема 6. Ряды динамики лекция 10. Понятие ряда динамики. Расчет показателей динамики
- •6.1. Ряды динамики и их виды. Установление вида ряда динамики.
- •6.2. Приведение рядов динамики к сопоставимому виду.
- •6.3. Показатели динамики.
- •6.4. Определение среднего абсолютного прироста, средних темпов роста и прироста.
- •Лекция 11. Анализ тенденций в рядах динамики
- •6.5. Определение в рядах динамики общей тенденции развития. Методы укрупненных и скользящих средних.
- •6.6. Метод аналитического выравнивания рядов динамики.
- •6.7. Определение в рядах внутригодовой динамики.
- •Вопросы для самостоятельной работы
- •Тема 7. Выборочное наблюдение лекция 12. Понятие выборочного наблюдения и ошибки выборки
- •7.1. Понятие выборочного наблюдения.
- •7.2. Понятие об ошибке выборки. Ошибки репрезентативности выборочного наблюдения.
- •7.3. Понятие предельной ошибки выборки.
- •Значение вероятности при разной величине коэффициента доверия t.
- •Лекция 13. Способы проведения и анализа выборочного наблюдения
- •7.4. Расчет необходимой численности выборки, доверительных интервалов выборочной оценки, вероятности осуществления заданной ошибки выборки.
- •7.5. Малая выборка. Способы распространения характеристик выборки на генеральную совокупность.
- •7.6. Способы отбора единиц из генеральной совокупности.
- •Вопросы для самостоятельной работы
- •Тема 8. Статистические индексы лекция 14. Понятие, виды и правила построения статистических индексов
- •8.1. Понятие и виды статистических индексов.
- •8.2. Агрегатные индексы.
- •8.3. Правила построения сводных индексов в агрегатной форме. Разновидности агрегатных индексов
- •2.2. Индекс посевной площади
- •8.5. Вычисление среднего индекса
- •8.6. Базисные и цепные индексы.
- •8.7. Индексы постоянного, переменного состава и структурных сдвигов.
- •Вопросы для самостоятельной работы
- •Тема 9. Статистические методы изучения взаимосвязей лекция 16. Понятие и методы изучения взаимосвязей
- •9.2. Методы изучения статистических связей.
- •9.1. Понятие статистической взаимосвязи. Виды и формы связей.
- •9.2. Методы изучения статистических связей.
- •9.3. Непараметрические методы изучения связей
- •Лекция 17. Корреляционно-регрессионный анализ
- •9.4. Однофакторный корреляционно-регрессионный анализ
- •9.5. Показатели тесноты статистической связи.
- •9.6. Многофакторный корреляционно-регрессионный анализ.
- •Вопросы для самостоятельной работы
- •Литература
- •Взаимосвязь индексов связанных явлений.
- •Вычисление среднего индекса
- •Методы изучения статистических связей.
Вопросы для самостоятельной работы
Что такое вариация признака и чем она обусловлена?
Какими показателями измеряется вариация?
В чем состоит значение вариации для ее изучения?
Как рассчитать показатели вариации (изменчивости) признака?
Каково значение абсолютных показателей вариации?
В чем состоит значение относительных показателей вариации?
Каковы особенности расчета показателей вариации для индивидуальных данных и рядов распределения (дискретных и интервальных)?
Какие Вы знаете свойства дисперсии?
На какие составляющие можно разложить общую дисперсию признака?
Каково значение расчета внутригрупповой и межгрупповой дисперсии?
Что характеризуют показатели дифференциации?
Тема 6. Ряды динамики лекция 10. Понятие ряда динамики. Расчет показателей динамики
6.1. Ряды динамики и их виды. Установление вида ряда динамики.
6.2. Приведение рядов динамики к сопоставимому виду.
6.3. Показатели динамики.
6.4. Определение среднего абсолютного прироста, средних темпов роста и прироста
6.1. Ряды динамики и их виды. Установление вида ряда динамики.
Основная цель статистического изучения динамики коммерческой деятельности состоит в выявлении и измерении закономерностей их развития во времени. Это достигается посредством построения и анализа статистических рядов динамики. С помощью рядов динамики определяют скорость и интенсивность развития явлений, выявляют основную тенденцию их развития, выделяют сезонные колебания, сравнивают развитие во времени отдельных показателей разных стран, выявляют связи между развивающимися во времени явлениями.
Рядами динамики в статистике называются последовательно расположенные в хронологическом порядке показатели, которые характеризуют развитие явлений во времени. Таким образом, ряды динамики это - статистические данные, отображающие развитие изучаемого явления во времени.
В каждом ряду динамики имеются два основных элемента: показатель времени - t; соответствующие им уровни развития изучаемого явления (уровни ряда динамики) - у. В качестве показателей времени в рядах динамики выступают либо определенные даты (моменты) времени, либо отдельные периоды (годы, кварталы, месяцы, сутки).
Уровни рядов динамики отображают количественную оценку (меру) развития во времени изучаемого явления. Они могут выражаться абсолютными, относительными или средними величинами.
В зависимости от характера изучаемого явления уровни рядов динамики могут относиться или к определенным датам (моментам) времени, или к отдельным периодам. В соответствии с этим, ряды динамики подразделяются на моментные и интервальные.
Моментные ряды динамики отображают состояние изучаемых явлений на определенные даты (моменты) времени.
Примером моментного ряда динамики является следующая информация о списочной численности работников фирмы N в 2004 г.:
Таблица 39
Дата |
1.01 |
1.04 |
1.07 |
1.10 |
1.01 |
Год |
2004г. |
2004 г. |
2004 г. |
2004 г. |
2005 г. |
Число работников, чел. |
192 |
190 |
195 |
198 |
200
|
Другой пример: число вкладов населения в учреждениях сберегательного банка РФ, на конец года за ряд лет.
Особенностью моментного ряда динамики является то, что в его уровни могут входить одни и те же единицы изучаемой совокупности. Так, основная часть персонала фирмы N, составляющая списочную численность на 1.01.2003г., продолжающая работать в течение данного года, отображена в уровнях последующих периодов. Поэтому при суммировании уровней моментного ряда динамики может возникнуть повторный счет. Поэтому суммирование уровней моментного ряда динамики не имеет смысла.
Интервальные ряды динамики отображают итоги развития (функционирования) изучаемых явлений за отдельные периоды (интервалы) времени.
Примером интервального ряда динамики могут служить данные о розничном товарообороте магазина в 2000-2004 гг.:
Таблица 40
Год |
2000 |
2001 |
2002 |
2003 |
2004 |
Объем розничного товарооборота, тыс. руб. |
885,7 |
932,6 |
980,1 |
1028,7 |
1088,4 |
Особенностью интервального ряда динамики является то, что каждый его уровень складывается из данных за более короткие интервалы времени. Например, суммируя товарооборот за первые три месяца года, получают его объем за I квартал, а сумма товарооборота четырех кварталов дает объем товарооборота за год и т.д. В интервальных рядах динамики уровни ряда можно суммировать и получить общую величину за ряд следующих друг за другом периодов.
Интервальный ряд динамики у которого уровни ряда могут складываться может быть представлен как ряд с нарастающими итогами. Для этого уровни ряда последовательно суммируются. Нарастающими итогами удобно пользоваться, когда нужно видеть обобщенные итоги с начала отчетного периода при анализе выполнения месячного, квартального, годового плана и т. д.
Ряды динамики могут быть с равным и неравным интервалами. Понятие интервала в моментных и интервальных рядах различные. Интервал моментного ряда - это период времени от одной даты до другой даты, на которые приведены данные. Если это данные о числе вкладов на конец года, то интервал равен от конца одного года, до конца другого года. Интервал интервального ряда - это период времени за который обобщены данные. Если это производство часов по годам, то интервал равен одному году.
Ряды динамики могут быть полными и неполными.
Полный ряд - ряд динамики, в котором одноименные моменты времени или периоды времени строго следуют один за другим в календарном порядке или равноотстоят друг от друга.
Неполный ряд динамики - ряд, в котором уровни зафиксированы в неравноотстоящие моменты или периоды времени.
Пример.
Численность населения СССР характеризуется данными переписей, млн. чел.:
1939 1959 1970 1979 неполный моментный ряд
170,6 208,8 241,7 262, 4 абсолютных величин
Пример.
Производство электроэнергии характеризуется следующими данными, млрд. кВт-ч.:
1930 1940 1950 1960 полный интервальный ряд
48,6 91,2 292,3 740,9 абсолютных величин