
- •Тема 1. Предмет и метод статистики. Источники статистической информации 10
- •Тема 2. Сводка и группировка 32
- •Тема 3. Статистические таблицы и графики 44
- •Тема 9. Статистические методы изучения взаимосвязей 149
- •Введение
- •Тема 1. Предмет и метод статистики. Источники статистической информации Лекция 1. Основные понятия и категории статистики
- •1.3. Категории статистики.
- •1.4. Особенности статистической методологии. Методы статистики.
- •1.5. Основные задачи и принципы организации государственной статистической службы в Российской Федерации
- •1.6. Источники статистической информации. Понятие статистического наблюдения. Виды статистического наблюдения.
- •1.7. Точность статистического наблюдения и ее контроль. Ошибки статистического наблюдения.
- •1.9. Программно-методологические вопросы статистического наблюдения
- •1.10. Организационный план статистического наблюдения.
- •Вопросы для самостоятельной работы
- •Тема 2. Сводка и группировка лекция 3. Сводка и группировка материалов статистического наблюдения
- •2.1. Понятие статистической сводки. Ряды распределения.
- •2.2. Понятие и виды группировок статистических данных
- •2.3. Техника и правила проведения группировки.
- •Вопросы для самостоятельной работы
- •Тема 3. Статистические таблицы и графики лекция 4. Понятие, виды и правила составления статистических таблиц
- •3.3. Правила построения, оформления, переноса таблиц, записи цифр.
- •3.1. Понятие и назначение статистических таблиц
- •3.2. Виды статистических таблиц
- •3.3. Правила построения, оформления, переноса таблиц, записи цифр.
- •Лекция 5. ГРаФический метод в статистике
- •3.4. Понятие и назначение статистических графиков
- •3.5. Классификация статистических графиков
- •1913 — 2004 Гг. В год на душу населения (в процентах к 1913 г.)
- •Вопросы для самостоятельной работы
- •4.2. Относительные статистические величины, их сущность и формы выражения.
- •4.3. Виды относительных величин.
- •4.4. Понятие и назначение средних величин в статистике
- •4.5. Средняя арифметическая и ее свойства.
- •Лекция 7. Виды и свойства средних в статистике
- •4.6. Средняя гармоническая.
- •4.7. Средняя геометрическая, средняя квадратическая, средняя хронологическая.
- •4.8. Структурные средние.
- •4.9. Робастные характеристики для оценки среднего арифметического.
- •Вопросы для самостоятельной работы
- •Тема 5. Показатели вариации лекция 8. Статистическая вариация и ее измерение
- •5.1. Понятие статистической вариации признаков. Назначение показателей вариации.
- •5.2. Абсолютные и средние показатели вариации и способы их расчета.
- •2) Определяются отклонения каждой варианты от средней ;
- •5.3. Расчет дисперсии и среднего квадратического отклонения по индивидуальным данным и в рядах распределения.
- •Лекция 9. Изучение важнейших свойств статистической вариации
- •5.4. Свойства дисперсии. Расчет дисперсии по формуле по индивидуальным данным и в рядах распределения.
- •5.5. Показатели относительного рассеивания.
- •5.6. Общая, межгрупповая и внутригрупповая дисперсии. Правило сложения дисперсий.
- •Вопросы для самостоятельной работы
- •Тема 6. Ряды динамики лекция 10. Понятие ряда динамики. Расчет показателей динамики
- •6.1. Ряды динамики и их виды. Установление вида ряда динамики.
- •6.2. Приведение рядов динамики к сопоставимому виду.
- •6.3. Показатели динамики.
- •6.4. Определение среднего абсолютного прироста, средних темпов роста и прироста.
- •Лекция 11. Анализ тенденций в рядах динамики
- •6.5. Определение в рядах динамики общей тенденции развития. Методы укрупненных и скользящих средних.
- •6.6. Метод аналитического выравнивания рядов динамики.
- •6.7. Определение в рядах внутригодовой динамики.
- •Вопросы для самостоятельной работы
- •Тема 7. Выборочное наблюдение лекция 12. Понятие выборочного наблюдения и ошибки выборки
- •7.1. Понятие выборочного наблюдения.
- •7.2. Понятие об ошибке выборки. Ошибки репрезентативности выборочного наблюдения.
- •7.3. Понятие предельной ошибки выборки.
- •Значение вероятности при разной величине коэффициента доверия t.
- •Лекция 13. Способы проведения и анализа выборочного наблюдения
- •7.4. Расчет необходимой численности выборки, доверительных интервалов выборочной оценки, вероятности осуществления заданной ошибки выборки.
- •7.5. Малая выборка. Способы распространения характеристик выборки на генеральную совокупность.
- •7.6. Способы отбора единиц из генеральной совокупности.
- •Вопросы для самостоятельной работы
- •Тема 8. Статистические индексы лекция 14. Понятие, виды и правила построения статистических индексов
- •8.1. Понятие и виды статистических индексов.
- •8.2. Агрегатные индексы.
- •8.3. Правила построения сводных индексов в агрегатной форме. Разновидности агрегатных индексов
- •2.2. Индекс посевной площади
- •8.5. Вычисление среднего индекса
- •8.6. Базисные и цепные индексы.
- •8.7. Индексы постоянного, переменного состава и структурных сдвигов.
- •Вопросы для самостоятельной работы
- •Тема 9. Статистические методы изучения взаимосвязей лекция 16. Понятие и методы изучения взаимосвязей
- •9.2. Методы изучения статистических связей.
- •9.1. Понятие статистической взаимосвязи. Виды и формы связей.
- •9.2. Методы изучения статистических связей.
- •9.3. Непараметрические методы изучения связей
- •Лекция 17. Корреляционно-регрессионный анализ
- •9.4. Однофакторный корреляционно-регрессионный анализ
- •9.5. Показатели тесноты статистической связи.
- •9.6. Многофакторный корреляционно-регрессионный анализ.
- •Вопросы для самостоятельной работы
- •Литература
- •Взаимосвязь индексов связанных явлений.
- •Вычисление среднего индекса
- •Методы изучения статистических связей.
5.2. Абсолютные и средние показатели вариации и способы их расчета.
Для характеристики совокупностей и исчисленных величин важно знать, какая вариация изучаемого признака скрывается за средним.
Для характеристикиизменчивости признака используется ряд показателей. Наиболее простой из них - размах вариации.
Размах вариации
- это разность между наибольшим (
)
и наименьшим (
)
значениями вариант.
Приведем пример
Таблица 32
Группы предприятий
по объему товарооборота, млн.руб.
|
Число предприятий
|
90 — 100 |
28 |
100 — 110 |
48 |
110 — 120 |
20 |
120 — 130 |
4 |
ИТОГО |
100 |
Определяем показатель размаха вариации:
R = 130 - 90 = 40 млн. руб.
Этот показатель улавливает только крайние отклонения и не отражает отклонений всех вариант в ряду.
Чтобы дать обобщающую характеристику распределению отклонений, исчисляют среднее линейное отклонение d, которое учитывает различие всех единиц изучаемой совокупности.
Среднее линейное отклонение определяется как средняя арифметическая из отклонений индивидуальных значений от средней, без учета знака этих отклонений:
.
Порядок расчета среднего линейного отклонения следующий:
1) по значениям признака исчисляется средняя арифметическая:
;
2) Определяются отклонения каждой варианты от средней ;
3) рассчитывается
сумма абсолютных величин отклонений:
;
4) сумма абсолютных величин отклонений делится на число значений:
.
Приведем пример.
Таблица 33
Табельный номер рабочего |
|
|
/ |
1 |
2 |
- 8 |
8 |
2 |
3 |
- 7 |
7 |
3 |
12 |
2 |
2 |
4 |
15 |
5 |
5 |
5 |
18 |
8 |
8 |
Итого |
50 |
0 |
30 |
d=
=
Если данные наблюдения представлены в виде дискретного ряда распределения с частотами, среднее линейное отклонение исчисляется по формуле средней арифметической взвешенной:
Порядок расчета среднего линейного отклонения взвешенного следующий:
1) вычисляется средняя арифметическая взвешенная:
;
2) определяются абсолютные отклонения вариант от средней / /;
3) полученные
отклонения умножаются на частоты
;
4) находится сумма взвешенных отклонений без учета знака:
;
5) сумма взвешенных отклонений делится на сумму частот:
.
5.3. Расчет дисперсии и среднего квадратического отклонения по индивидуальным данным и в рядах распределения.
Основными обобщающими показателями вариации в статистике являются дисперсии и среднее квадратическое отклонение.
Дисперсия
- это средняя арифметическая квадратов
отклонений каждого значения признака
от общей средней. Дисперсия обычно
называется средним квадратом отклонений
и обозначается
(сигма в квадрате). В зависимости от
исходных данных дисперсия может
вычисляться по средней арифметической
простой или взвешенной:
— дисперсия
невзвешенная (простая);
— дисперсия
взвешенная.
Среднее квадратическое отклонение (иногда его называют стандартное отклонение или «стандарт») представляет собой корень квадратный из дисперсии и обозначается σ:
— среднее
квадратическое отклонение невзвешенное;
— среднее
квадратическое отклонение взвешенное.
Среднее квадратическое отклонение - это обобщающая характеристика абсолютных размеров вариации признака в совокупности. Выражается оно в тех же единицах измерения, что и признак (в метрах, тоннах, процентах, гектарах и т.д.).
Среднее квадратическое отклонение является мерилом надежности средней. Чем меньше среднее квадратическое отклонение, тем лучше средняя арифметическая отражает собой всю представляемую совокупность.
Как известно необходимой предпосылкой корректного использования статистических методов анализа является однородность совокупности. Неоднородность совокупности возникает вследствие значительной вариации значений признака или попадания в совокупность резко выделяющихся, так называемых “аномальных” наблюдений. Для их выявления используется правило трех сигм, которое состоит в том, что “аномальными” будут те варианты, у которых значения анализируемого признака будут выходить за пределы интервала, т.е.:
где |
|
среднее значение признака |
|
|
среднее квадратическое отклонение данного признака |
|
|
отдельные значения вариант |
Вычислению среднего квадратического отклонения предшествует расчет дисперсии.
Порядок расчета дисперсии взвешенной:
1) определяют среднюю арифметическую взвешенную:
;
2) определяются
отклонения вариант от средней
;
3) возводят в квадрат
отклонение каждой варианты от средней
;
4) умножают квадраты отклонений на соответствующие веса (частоты)
;
5) суммируют полученные произведения
;
6) Полученную сумму делят на сумму весов
.
Приведем пример расчета дисперсии и среднего квадратического отклонения с учетом частот отдельных значений вариант.
Таблица 34.
Произведено продукции одним рабочим, шт. ( варианта) |
Число рабочих,
|
|
|
|
|
8 |
7 |
56 |
-2 |
4 |
28 |
9 |
10 |
90 |
-1 |
1 |
10 |
10 |
15 |
150 |
0 |
0 |
0 |
11 |
12 |
132 |
1 |
1 |
12 |
12 |
6 |
72 |
2 |
4 |
24 |
ИТОГО |
50 |
500 |
|
|
74 |
Исчислим среднюю арифметическую взвешенную:
шт.
Значения отклонений от средней и их квадратов представлены в таблице 6.3. Определим дисперсию:
=1,48
Среднее квадратическое отклонение будет равно:
шт.
Если исходные данные представлены в виде интервального ряда распределения, то сначала надо определить дискретное значение признака, а далее применить тот же метод, что изложен выше.
Покажем расчет дисперсии для интервального ряда на данных о распределении посевной площади сельскохозяйственного предприятия по урожайности пшеницы в следующем примере:
Таблица 35
Урожайность пшеницы, ц/га |
Посевная площадь, га |
|
|
|
|
|
14 - 16 |
100 |
15 |
1500 |
-3,4 |
11,56 |
1156 |
16 - 18 |
300 |
17 |
5100 |
-1,4 |
1,96 |
588 |
18 - 20 |
400 |
19 |
7600 |
0,6 |
0,36 |
144 |
20 - 22 |
200 |
21 |
4200 |
2,6 |
6,76 |
1352 |
ИТОГО |
1000 |
|
18400 |
|
|
3240 |
Средняя арифметическая равна:
ц с 1га.
Исчислим дисперсию: