
- •Тема 1. Предмет и метод статистики. Источники статистической информации 10
- •Тема 2. Сводка и группировка 32
- •Тема 3. Статистические таблицы и графики 44
- •Тема 9. Статистические методы изучения взаимосвязей 149
- •Введение
- •Тема 1. Предмет и метод статистики. Источники статистической информации Лекция 1. Основные понятия и категории статистики
- •1.3. Категории статистики.
- •1.4. Особенности статистической методологии. Методы статистики.
- •1.5. Основные задачи и принципы организации государственной статистической службы в Российской Федерации
- •1.6. Источники статистической информации. Понятие статистического наблюдения. Виды статистического наблюдения.
- •1.7. Точность статистического наблюдения и ее контроль. Ошибки статистического наблюдения.
- •1.9. Программно-методологические вопросы статистического наблюдения
- •1.10. Организационный план статистического наблюдения.
- •Вопросы для самостоятельной работы
- •Тема 2. Сводка и группировка лекция 3. Сводка и группировка материалов статистического наблюдения
- •2.1. Понятие статистической сводки. Ряды распределения.
- •2.2. Понятие и виды группировок статистических данных
- •2.3. Техника и правила проведения группировки.
- •Вопросы для самостоятельной работы
- •Тема 3. Статистические таблицы и графики лекция 4. Понятие, виды и правила составления статистических таблиц
- •3.3. Правила построения, оформления, переноса таблиц, записи цифр.
- •3.1. Понятие и назначение статистических таблиц
- •3.2. Виды статистических таблиц
- •3.3. Правила построения, оформления, переноса таблиц, записи цифр.
- •Лекция 5. ГРаФический метод в статистике
- •3.4. Понятие и назначение статистических графиков
- •3.5. Классификация статистических графиков
- •1913 — 2004 Гг. В год на душу населения (в процентах к 1913 г.)
- •Вопросы для самостоятельной работы
- •4.2. Относительные статистические величины, их сущность и формы выражения.
- •4.3. Виды относительных величин.
- •4.4. Понятие и назначение средних величин в статистике
- •4.5. Средняя арифметическая и ее свойства.
- •Лекция 7. Виды и свойства средних в статистике
- •4.6. Средняя гармоническая.
- •4.7. Средняя геометрическая, средняя квадратическая, средняя хронологическая.
- •4.8. Структурные средние.
- •4.9. Робастные характеристики для оценки среднего арифметического.
- •Вопросы для самостоятельной работы
- •Тема 5. Показатели вариации лекция 8. Статистическая вариация и ее измерение
- •5.1. Понятие статистической вариации признаков. Назначение показателей вариации.
- •5.2. Абсолютные и средние показатели вариации и способы их расчета.
- •2) Определяются отклонения каждой варианты от средней ;
- •5.3. Расчет дисперсии и среднего квадратического отклонения по индивидуальным данным и в рядах распределения.
- •Лекция 9. Изучение важнейших свойств статистической вариации
- •5.4. Свойства дисперсии. Расчет дисперсии по формуле по индивидуальным данным и в рядах распределения.
- •5.5. Показатели относительного рассеивания.
- •5.6. Общая, межгрупповая и внутригрупповая дисперсии. Правило сложения дисперсий.
- •Вопросы для самостоятельной работы
- •Тема 6. Ряды динамики лекция 10. Понятие ряда динамики. Расчет показателей динамики
- •6.1. Ряды динамики и их виды. Установление вида ряда динамики.
- •6.2. Приведение рядов динамики к сопоставимому виду.
- •6.3. Показатели динамики.
- •6.4. Определение среднего абсолютного прироста, средних темпов роста и прироста.
- •Лекция 11. Анализ тенденций в рядах динамики
- •6.5. Определение в рядах динамики общей тенденции развития. Методы укрупненных и скользящих средних.
- •6.6. Метод аналитического выравнивания рядов динамики.
- •6.7. Определение в рядах внутригодовой динамики.
- •Вопросы для самостоятельной работы
- •Тема 7. Выборочное наблюдение лекция 12. Понятие выборочного наблюдения и ошибки выборки
- •7.1. Понятие выборочного наблюдения.
- •7.2. Понятие об ошибке выборки. Ошибки репрезентативности выборочного наблюдения.
- •7.3. Понятие предельной ошибки выборки.
- •Значение вероятности при разной величине коэффициента доверия t.
- •Лекция 13. Способы проведения и анализа выборочного наблюдения
- •7.4. Расчет необходимой численности выборки, доверительных интервалов выборочной оценки, вероятности осуществления заданной ошибки выборки.
- •7.5. Малая выборка. Способы распространения характеристик выборки на генеральную совокупность.
- •7.6. Способы отбора единиц из генеральной совокупности.
- •Вопросы для самостоятельной работы
- •Тема 8. Статистические индексы лекция 14. Понятие, виды и правила построения статистических индексов
- •8.1. Понятие и виды статистических индексов.
- •8.2. Агрегатные индексы.
- •8.3. Правила построения сводных индексов в агрегатной форме. Разновидности агрегатных индексов
- •2.2. Индекс посевной площади
- •8.5. Вычисление среднего индекса
- •8.6. Базисные и цепные индексы.
- •8.7. Индексы постоянного, переменного состава и структурных сдвигов.
- •Вопросы для самостоятельной работы
- •Тема 9. Статистические методы изучения взаимосвязей лекция 16. Понятие и методы изучения взаимосвязей
- •9.2. Методы изучения статистических связей.
- •9.1. Понятие статистической взаимосвязи. Виды и формы связей.
- •9.2. Методы изучения статистических связей.
- •9.3. Непараметрические методы изучения связей
- •Лекция 17. Корреляционно-регрессионный анализ
- •9.4. Однофакторный корреляционно-регрессионный анализ
- •9.5. Показатели тесноты статистической связи.
- •9.6. Многофакторный корреляционно-регрессионный анализ.
- •Вопросы для самостоятельной работы
- •Литература
- •Взаимосвязь индексов связанных явлений.
- •Вычисление среднего индекса
- •Методы изучения статистических связей.
4.9. Робастные характеристики для оценки среднего арифметического.
В ряде случаев в изучаемой совокупности имеется небольшое число элементов с чрезвычайно большим или чрезмерно малым значением исследуемого признака.
В этих случаях в дополнение к среднему арифметическому целесообразно вычислить моду и медиану, которые в отличие от среднего не зависят от крайних, не характерных для совокупности значений признака. Мода и медиана относятся к классу так называемых “робастных характеристик”, т.е. не чувствительных к аномальным значениям признака.
Рассмотрим робастные характеристики, применяемые для оценки среднего арифметического:
1. Усеченное среднее
арифметическое порядка α
½)
Пусть имеем ряд значений признака, упорядоченный в возрастающем порядке
,
упорядоченный в возрастающем порядке.
Пусть первые x(1),...,x(m) - аномально маленькие, а x(n-m+1),...,x(n) - аномально большие.
где α - указывает долю отбрасываемых значений признака.
2. Среднее по Виндору
Отличается от усеченного тем, что аномальные значения признака не отбрасываются, а полагаются крайним значениям, принимаемым на обработку.
x(1)=x(2)...=x(m)=x(m+1)
x(n)=x(n-1)=...=x(n-m+1)=x(n-m)
Вопросы для самостоятельной работы
Какие группы обобщающих статистических показателей выделяют?
Чем отличаются абсолютные, относительные, средние статистические величины и в чем особенности их применения?
Какие бывают виды единиц измерения абсолютных величин, в чем их особенность, достоинства, недостатки отдельных видов?
Каково назначение различных видов относительных величин?
В каких единицах измеряются относительные величины?
В чем состоит роль и значение средних величин?
Как обосновать выбор вида средней?
Как обосновать выбор весов при расчете взвешенной средней?
Что представляют собой структурные средние и как их определять по не сгруппированным данным?
В чем состоят особенности расчета средней арифметической, моды и медианы в дискретных и интервальных рядах распределения?
Для чего нужны робастные оценки средних и в каких случаях их применяют?
Тема 5. Показатели вариации лекция 8. Статистическая вариация и ее измерение
5.1. Понятие статистической вариации признаков. Назначение показателей вариации.
5.2. Абсолютные и средние показатели вариации и способы их расчета
5.3. Расчет дисперсии и среднего квадратического отклонения по индивидуальным данным и в рядах распределения.
5.1. Понятие статистической вариации признаков. Назначение показателей вариации.
Различие индивидуальных значений признака внутри изучаемой совокупности в статистике называется вариацией признака.
Она возникает в результате того, что его индивидуальные значения складываются под совокупным влиянием разнообразных факторов, которые по-разному сочетаются в каждом отдельном случае.
Информация о средних уровнях исследуемых показателей обычно бывает недостаточной для глубокого анализа изучаемого процесса или явления. Средняя величина — это важная обобщающая характеристика признака изучаемой совокупности, но она не показывает строения совокупности, которое весьма существенно для ее познания. Средняя величина не дает представления о том, как отдельные значения изучаемого признака группируются вокруг средней, сосредоточены ли они вблизи или значительно отклоняются от нее. Необходимо учитывать и разброс или вариацию значений отдельных единиц, которая является важной характеристикой изучаемой совокупности. Каждое индивидуальное значение признака складывается под совместным воздействием многих факторов. Социально-экономические явления, как правило, обладают большой вариацией. Причины этой вариации содержатся в сущности явления.
В некоторых случаях отдельные значения признака близко примыкают к средней арифметической и мало от нее отличаются. В таких случаях средняя хорошо представляет всю совокупность.
В других, наоборот, отдельные значения совокупности далеко отстают от средней, и средняя плохо представляет всю совокупность.
Изменчивость отдельных значений характеризуют показатели вариации.
Показатели вариации определяют как группируются значения признака вокруг средней величины. Они используются для характеристики упорядоченных статистических совокупностей: группировок, классификаций, рядов распределения. В наибольшей степени вариации подвержены курсы акций, объёмы спроса и предложения, процентные ставки в разные периоды и в разных местах.
Термин «вариация» произошел от латинского variatio –изменение, колеблемость, различие, изменчивость. Однако не всякие различия принято называть вариацией. Под вариацией в статистике понимают такие количественные изменения величины исследуемого признака в пределах однородной совокупности, которые обусловлены перекрещивающимся влиянием действия различных факторов. Различают вариацию признака: случайную и систематическую.
Анализ систематической вариации позволяет оценить степень зависимости изменений в изучаемом признаке от определяющих ее факторов. Например, изучая силу и характер вариации в выделяемой совокупности, можно оценить, насколько однородной является данная совокупность в количественном, а иногда и качественном отношении, а следовательно, насколько характерной является исчисленная средняя величина. Степень близости данных отдельных единиц хi к средней измеряется рядом абсолютных, средних и относительных показателей вариации.