
- •Тема 1. Предмет и метод статистики. Источники статистической информации 10
- •Тема 2. Сводка и группировка 32
- •Тема 3. Статистические таблицы и графики 44
- •Тема 9. Статистические методы изучения взаимосвязей 149
- •Введение
- •Тема 1. Предмет и метод статистики. Источники статистической информации Лекция 1. Основные понятия и категории статистики
- •1.3. Категории статистики.
- •1.4. Особенности статистической методологии. Методы статистики.
- •1.5. Основные задачи и принципы организации государственной статистической службы в Российской Федерации
- •1.6. Источники статистической информации. Понятие статистического наблюдения. Виды статистического наблюдения.
- •1.7. Точность статистического наблюдения и ее контроль. Ошибки статистического наблюдения.
- •1.9. Программно-методологические вопросы статистического наблюдения
- •1.10. Организационный план статистического наблюдения.
- •Вопросы для самостоятельной работы
- •Тема 2. Сводка и группировка лекция 3. Сводка и группировка материалов статистического наблюдения
- •2.1. Понятие статистической сводки. Ряды распределения.
- •2.2. Понятие и виды группировок статистических данных
- •2.3. Техника и правила проведения группировки.
- •Вопросы для самостоятельной работы
- •Тема 3. Статистические таблицы и графики лекция 4. Понятие, виды и правила составления статистических таблиц
- •3.3. Правила построения, оформления, переноса таблиц, записи цифр.
- •3.1. Понятие и назначение статистических таблиц
- •3.2. Виды статистических таблиц
- •3.3. Правила построения, оформления, переноса таблиц, записи цифр.
- •Лекция 5. ГРаФический метод в статистике
- •3.4. Понятие и назначение статистических графиков
- •3.5. Классификация статистических графиков
- •1913 — 2004 Гг. В год на душу населения (в процентах к 1913 г.)
- •Вопросы для самостоятельной работы
- •4.2. Относительные статистические величины, их сущность и формы выражения.
- •4.3. Виды относительных величин.
- •4.4. Понятие и назначение средних величин в статистике
- •4.5. Средняя арифметическая и ее свойства.
- •Лекция 7. Виды и свойства средних в статистике
- •4.6. Средняя гармоническая.
- •4.7. Средняя геометрическая, средняя квадратическая, средняя хронологическая.
- •4.8. Структурные средние.
- •4.9. Робастные характеристики для оценки среднего арифметического.
- •Вопросы для самостоятельной работы
- •Тема 5. Показатели вариации лекция 8. Статистическая вариация и ее измерение
- •5.1. Понятие статистической вариации признаков. Назначение показателей вариации.
- •5.2. Абсолютные и средние показатели вариации и способы их расчета.
- •2) Определяются отклонения каждой варианты от средней ;
- •5.3. Расчет дисперсии и среднего квадратического отклонения по индивидуальным данным и в рядах распределения.
- •Лекция 9. Изучение важнейших свойств статистической вариации
- •5.4. Свойства дисперсии. Расчет дисперсии по формуле по индивидуальным данным и в рядах распределения.
- •5.5. Показатели относительного рассеивания.
- •5.6. Общая, межгрупповая и внутригрупповая дисперсии. Правило сложения дисперсий.
- •Вопросы для самостоятельной работы
- •Тема 6. Ряды динамики лекция 10. Понятие ряда динамики. Расчет показателей динамики
- •6.1. Ряды динамики и их виды. Установление вида ряда динамики.
- •6.2. Приведение рядов динамики к сопоставимому виду.
- •6.3. Показатели динамики.
- •6.4. Определение среднего абсолютного прироста, средних темпов роста и прироста.
- •Лекция 11. Анализ тенденций в рядах динамики
- •6.5. Определение в рядах динамики общей тенденции развития. Методы укрупненных и скользящих средних.
- •6.6. Метод аналитического выравнивания рядов динамики.
- •6.7. Определение в рядах внутригодовой динамики.
- •Вопросы для самостоятельной работы
- •Тема 7. Выборочное наблюдение лекция 12. Понятие выборочного наблюдения и ошибки выборки
- •7.1. Понятие выборочного наблюдения.
- •7.2. Понятие об ошибке выборки. Ошибки репрезентативности выборочного наблюдения.
- •7.3. Понятие предельной ошибки выборки.
- •Значение вероятности при разной величине коэффициента доверия t.
- •Лекция 13. Способы проведения и анализа выборочного наблюдения
- •7.4. Расчет необходимой численности выборки, доверительных интервалов выборочной оценки, вероятности осуществления заданной ошибки выборки.
- •7.5. Малая выборка. Способы распространения характеристик выборки на генеральную совокупность.
- •7.6. Способы отбора единиц из генеральной совокупности.
- •Вопросы для самостоятельной работы
- •Тема 8. Статистические индексы лекция 14. Понятие, виды и правила построения статистических индексов
- •8.1. Понятие и виды статистических индексов.
- •8.2. Агрегатные индексы.
- •8.3. Правила построения сводных индексов в агрегатной форме. Разновидности агрегатных индексов
- •2.2. Индекс посевной площади
- •8.5. Вычисление среднего индекса
- •8.6. Базисные и цепные индексы.
- •8.7. Индексы постоянного, переменного состава и структурных сдвигов.
- •Вопросы для самостоятельной работы
- •Тема 9. Статистические методы изучения взаимосвязей лекция 16. Понятие и методы изучения взаимосвязей
- •9.2. Методы изучения статистических связей.
- •9.1. Понятие статистической взаимосвязи. Виды и формы связей.
- •9.2. Методы изучения статистических связей.
- •9.3. Непараметрические методы изучения связей
- •Лекция 17. Корреляционно-регрессионный анализ
- •9.4. Однофакторный корреляционно-регрессионный анализ
- •9.5. Показатели тесноты статистической связи.
- •9.6. Многофакторный корреляционно-регрессионный анализ.
- •Вопросы для самостоятельной работы
- •Литература
- •Взаимосвязь индексов связанных явлений.
- •Вычисление среднего индекса
- •Методы изучения статистических связей.
4.2. Относительные статистические величины, их сущность и формы выражения.
Относительными величинами в статистике называются величины, выражающие количественное соотношение между явлениями общественной жизни. Они получаются в результате деления одной величины на другую.
Величина, с которой производится сравнение (знаменатель) называется основанием, базой сравнения; а та, которая сравнивается (числитель), - называется, сравниваемой, отчетной или текущей величиной.
Так, если план производства определенного вида продукции установлен в 900 единиц в месяц, а фактически за отчетный месяц выработано 945 единиц, то, сравнив эти показатели, получим относительную величину степени выполнения плана 945 : 900 = 1,05 или 105,0%. Такое сравнение дает возможность установить, что план выполнен на 105% или перевыполнен на 5%.
Относительная величина показывает, во сколько раз сравниваемая величина больше или меньше основания, или какую долю, первая составляет от второй; а в отдельных случаях - сколько единиц одной величины приходится на единицу (или на 100, на 1000 и т.д.) другой (базисной) величины.
В результате сопоставления одноименных абсолютных величин получаются отвлеченные неименованные относительные величины, показывающие во сколько раз данная величина больше или меньше базисной. В этом случае базисная величина принимается как бы за единицу (в результате получается коэффициент).
Кроме коэффициента широко распространенной формой выражения относительных величин являются проценты (%). В этом случае базисная величина принимается за 100 единиц.
Относительные величины могут выражаться в промилле (‰), в продецимилле (0/000). В этих случаях база сравнения принимается соответственно за 1 000 и за 10 000. В отдельных случаях база сравнения может быть принята и за 100 000.
Наиболее удобные формы выражения относительных величин выбираются в зависимости от соотношения сравниваемых величин и от смыслового значения сравнения. Если сравниваемая величина больше основания, то возникает проблема выбора между коэффициентом и процентом. Коэффициент характеризует во сколько раз сравниваемая величина больше основания. Процент этого прямо не показывает, но если из него вычесть 100, то можно сказать, на сколько процентов сравниваемая величина больше основания.
Если же сравниваемая величина меньше основания, то лучше применять проценты; если она значительно меньше – промилле.
Относительные величины могут быть числами именованными. Ее наименование представляет собой сочетание наименований сравниваемого и базисного показателей. Например, плотность населения чел/кв. км (сколько человек приходится на 1 квадратный километр).
4.3. Виды относительных величин.
Виды относительных величин подразделяются в зависимости от их содержания. Это относительные величины: планового задания, выполнения плана, динамики, структуры, координации, интенсивности и уровня экономического развития, сравнения.
Относительная величина планового задания представляет собой отношение величины показателя, устанавливаемой на планируемый период к величине его, достигнутой к планируемому периоду.
Относительной величиной выполнения плана называется величина, выражающая соотношение между фактическим и плановым уровнем показателя.
Относительная величина динамики (темп роста) представляет собой отношение уровня показателя за данный период к уровню этого же показателя в прошлом.
Три вышеперечисленные относительные величины связаны между собой, а именно: относительная величина динамики равна произведению относительных величин планового задания и выполнения плана.
Относительная величина структуры представляет собой отношение размеров части к целому. Она характеризует структуру, состав той или иной совокупности. Например, состав населения по полу. Доля женщин = (численность женщин) / (все население). Доля мужчин = (численность мужчин) / (все население). Эти же величины в процентах называют удельным весом.
Относительной величиной координации называют соотношение частей целого между собой. В результате получают, во сколько раз данная часть больше базисной, или сколько процентов от нее составляет или сколько единиц данной структурной части приходится на 1 единицу (100 или 1000 и т.д. единиц) базисной структурной части.
Например, на 100 родившихся девочек приходится 105 родившихся мальчиков ((родившиеся мальчики)/(родившиеся девочки)*100).
Или, предположим, что на предприятии 900 производственных рабочих и 100 – непроизводственных. Применяя показатели структуры можно сказать, что производственные рабочие составляют 90%, а непроизводственные 10% от общего числа рабочих (удельный вес тех и других). Применяя показатели координации, увидим, что производственных рабочих в 9 раз больше непроизводственных, или что на 9 производственных рабочих приходится 1 непроизводственный рабочий.
Относительная величина интенсивности характеризует развитие изучаемого явления или процесса в другой среде. Это отношение двух взаимосвязанных явлений, но разных. Оно может быть выражено и в процентах, и в промилле, и продецемилле, и именованной. Например, число вакансий на 100 незанятых граждан - (число вакансий)/(число незанятых)*100 или коэффициент рождаемости в 0/00 =(число родившихся за период)/(численность населения)*1000, или плотность населения (все население, чел)/(вся территория, кв. км)=чел/кв. км..
Разновидностью относительной величины интенсивности является показатель уровня экономического развития, характеризующий производство продукции на душу населения. Например, производство мяса на душу населения =(производство мяса за период, кг)/(среднегодовая численность населения за период).
Относительная величина сравнения представляет собой соотношение одноименных абсолютных показателей по разным объектам (предприятиям, районам, областям, странам и т.д.). Он может быть выражен как в коэффициентах, так и в процентах.