
- •1) Основные понятия и величины, характеризующие электрические цепи
- •2) Классификация электрических цепей и их элементов. Виды схем, используемых в электротехнике
- •3) Основные законы электротехники
- •4) Типы задач, решаемых при расчёте электрооборудования. Дуальность элементов
- •5) Метод эквивалентных преобразований
- •6) Метод пропорциональных (определяющих) величин
- •7) Метод составления полной системы уравнений Кирхгофа
- •8) Метод контурных токов
- •10) Метод узловых напряжений (потенциалов)
- •11) Представление схем в виде графов. Топологические понятия
- •12,13) Виды матриц, используемых для описания схем в виде графа. Порядок составления топологических матриц
- •14) Матричная запись метода контурных токов
- •15) Матричная запись метода узловых напряжений
- •16) Теорема наложения и метод расчёта, основанный на ней
- •17) Теорема об эквивалентном генераторе и метод расчёта, основанный на ней
- •18) Теорема взаимности и метод расчёта, основанный на ней
- •19) Гармонические колебания , их описание и характеристики
- •20) Векторная форма представления синусоидальных величин
- •21) Представление синусоидальных величин в комплексной плоскости
- •22) Последовательная r-l-c цепь. Основные соотношения, полное комплексное сопротивление
- •23) Мощность цепи синусоидального тока
- •1. Резистор (идеальное активное сопротивление).
- •2. Катушка индуктивности (идеальная индуктивность)
- •3. Конденсатор (идеальная емкость)
- •24) Резонансные характеристики r-l-c цепи при последовательном соединении элементов
- •2. В цепи преобладает емкость, т.Е. , а значит,. Этот случай отражает векторная диаграмма на рис. 2,б.
- •25) Параллельная r-l-c цепь. Основные соотношения. Полная комплексная проводимость
- •27) Резонансные характеристики параллельной r-l-c цепи
- •28) Особенности анализа цепей со взаимоиндуктивными связями
- •Воздушный (линейный) трансформатор
- •29) Анализ цепей при несинусоидальном периодическом токе. Три формы разложения периодических сигналов в ряд Фурье
- •30) Интегральные характеристики несинусоидальных колебаний. Равенство Парсеваля
- •31) Частотные характеристики линейных электрических цепей и их использование в электрических цепях
- •32) Анализ электрических цепей как четырёхполюсников. Шесть комплектов первичных параметров
- •33) Схемы соединения и порядок свёртки четырехполюсников
- •34) Принципы согласования нагрузки. Характеристические (вторичные) параметры четырёхполюсников и их связь с первичными параметрами
- •35) Экспериментальное определение первичных и вторичных параметров четырёхполюсников
- •37) Транзистор как четырёхполюсник
- •40) Виды нелинейных элементов цепей и способы их описания
- •41) Графический метод анализа нелинейных цепей на постоянном токе
- •42) Графический метод анализа нелинейных цепей на переменном токе
- •Графический метод с использованием характеристик для мгновенных значений
- •Решение
- •43) Аналитический метод анализа нелинейных цепей
- •44) Понятие о режимах малого и большого сигнала
- •45) Магнитные цепи
- •Характеристики ферромагнитных материалов
- •Основные законы магнитных цепей
- •46) Методы анализа магнитных цепей
- •Регулярные методы расчета
- •1. Прямая” задача для неразветвленной магнитной цепи
- •2. “Прямая” задача для разветвленной магнитной цепи
- •Графические методы расчета
- •1. “Обратная” задача для неразветвленной магнитной цепи
- •2. “Обратная” задача для разветвленной магнитной цепи
- •Итерационные методы расчета
- •47) Электромагнитные устройства постоянного тока
- •48) Магнитные цепи переменного тока и методы их анализа
- •49) Методы машинного расчёта нелинейных цепей (итерационные методы)
- •50) Трансформаторы. Схема замещения и её использование для построения векторной диаграммы
- •51) Характеристики трансформатора при его нагрузке
- •52) Устройство машины постоянного тока. Способы и схемы возбуждения
- •54) Асинхронные трёхфазные двигатели. Устройство и принцип действия
- •58) Синхронные электрические машины. Устройство и принцип действия
- •55) Пуск асинхронного двигателя. Рабочие характеристики
- •56) Регулирование частоты вращения асинхронного двигателя
- •57) Асинхронные двигатели при однофазном питании
- •59) Синхронные генераторы. Нагрузочная и регулировочная характеристики
- •60) Синхронные двигатели автоматических устройств. Шаговые двигатели
- •Система пуска синхронного двигателя
- •Шаговый двигатель
41) Графический метод анализа нелинейных цепей на постоянном токе
При использовании этих методов задача решается путем графических построений на плоскости. При этом характеристики всех ветвей цепи следует записать в функции одного общего аргумента. Благодаря этому система уравнений сводится к одному нелинейному уравнению с одним неизвестным. Формально при расчете различают цепи с последовательным, параллельным и смешанным соединениями.
а) Цепи с последовательным соединением резистивных элементов.
При последовательном
соединении нелинейных резисторов в
качестве общего аргумента принимается
ток, протекающий через последовательно
соединенные элементы. Расчет проводится
в следующей последовательности. По
заданным ВАХ
отдельных
резисторов в системе декартовых координат
строится
результирующая зависимость
.
Затем на оси напряжений откладывается
точка, соответствующая в выбранном
масштабе заданной величине напряжения
на входе цепи, из которой восстанавливается
перпендикуляр до пересечения с
зависимостью
.
Из точки пересечения перпендикуляра с
кривой
опускается
ортогональ на ось токов – полученная
точка соответствует искомому току в
цепи, по найденному значению которого
с использованием зависимостей
определяются
напряжения
на
отдельных резистивных элементах.
Применение указанной методики иллюстрируют графические построения на рис. 2,б, соответствующие цепи на рис. 2,а.
Графическое
решение для последовательной нелинейной
цепи с двумя резистивными элементами
может быть проведено и другим методом
– методом пересечений. В этом случае
один из нелинейных резисторов, например,
с ВАХ
на
рис.2,а, считается внутренним сопротивлением
источника с ЭДС Е, а другой – нагрузкой.
Тогда на основании соотношения
точка
а (см. рис. 3) пересечения кривых
и
определяет
режим работы цепи. Кривая
строится
путем вычитания абсцисс ВАХ
из
ЭДС Е для различных значений тока.
Использование данного метода наиболее рационально при последовательном соединении линейного и нелинейного резисторов. В этом случае линейный резистор принимается за внутреннее сопротивление источника, и линейная ВАХ последнего строится по двум точкам.
б) Цепи с параллельным соединением резистивных элементов.
При параллельном
соединении нелинейных резисторов в
качестве общего аргумента принимается
напряжение, приложенное к параллельно
соединенным элементам. Расчет проводится
в следующей последовательности. По
заданным ВАХ
отдельных
резисторов в системе декартовых координат
строится
результирующая зависимость
.
Затем на оси токов откладывается точка,
соответствующая в выбранном масштабе
заданной величине тока источника на
входе цепи (при наличии на входе цепи
источника напряжения задача решается
сразу путем восстановления перпендикуляра
из точки, соответствующей заданному
напряжению источника, до пересечения
с ВАХ
),
из которой восстанавливается перпендикуляр
до пересечения с зависимостью
.
Из точки пересечения перпендикуляра с
кривой
опускается
ортогональ на ось напряжений – полученная
точка соответствует напряжению на
нелинейных резисторах, по найденному
значению которого с использованием
зависимостей
определяются
токи
в
ветвях с отдельными резистивными
элементами.
Использование данной методики иллюстрируют графические построения на рис. 4,б, соответствующие цепи на рис. 4,а.
в) Цепи с последовательно-параллельным (смешанным) соединением резистивных элементов.
1. Расчет таких цепей производится в следующей последовательности:
Исходная схема сводится к цепи с последовательным соединением резисторов, для чего строится результирующая ВАХ параллельно соединенных элементов, как это показано в пункте б).
2. Проводится расчет полученной схемы с последовательным соединением резистивных элементов (см. пункт а), на основании которого затем определяются токи в исходных параллельных ветвях.