
- •1) Основные понятия и величины, характеризующие электрические цепи
- •2) Классификация электрических цепей и их элементов. Виды схем, используемых в электротехнике
- •3) Основные законы электротехники
- •4) Типы задач, решаемых при расчёте электрооборудования. Дуальность элементов
- •5) Метод эквивалентных преобразований
- •6) Метод пропорциональных (определяющих) величин
- •7) Метод составления полной системы уравнений Кирхгофа
- •8) Метод контурных токов
- •10) Метод узловых напряжений (потенциалов)
- •11) Представление схем в виде графов. Топологические понятия
- •12,13) Виды матриц, используемых для описания схем в виде графа. Порядок составления топологических матриц
- •14) Матричная запись метода контурных токов
- •15) Матричная запись метода узловых напряжений
- •16) Теорема наложения и метод расчёта, основанный на ней
- •17) Теорема об эквивалентном генераторе и метод расчёта, основанный на ней
- •18) Теорема взаимности и метод расчёта, основанный на ней
- •19) Гармонические колебания , их описание и характеристики
- •20) Векторная форма представления синусоидальных величин
- •21) Представление синусоидальных величин в комплексной плоскости
- •22) Последовательная r-l-c цепь. Основные соотношения, полное комплексное сопротивление
- •23) Мощность цепи синусоидального тока
- •1. Резистор (идеальное активное сопротивление).
- •2. Катушка индуктивности (идеальная индуктивность)
- •3. Конденсатор (идеальная емкость)
- •24) Резонансные характеристики r-l-c цепи при последовательном соединении элементов
- •2. В цепи преобладает емкость, т.Е. , а значит,. Этот случай отражает векторная диаграмма на рис. 2,б.
- •25) Параллельная r-l-c цепь. Основные соотношения. Полная комплексная проводимость
- •27) Резонансные характеристики параллельной r-l-c цепи
- •28) Особенности анализа цепей со взаимоиндуктивными связями
- •Воздушный (линейный) трансформатор
- •29) Анализ цепей при несинусоидальном периодическом токе. Три формы разложения периодических сигналов в ряд Фурье
- •30) Интегральные характеристики несинусоидальных колебаний. Равенство Парсеваля
- •31) Частотные характеристики линейных электрических цепей и их использование в электрических цепях
- •32) Анализ электрических цепей как четырёхполюсников. Шесть комплектов первичных параметров
- •33) Схемы соединения и порядок свёртки четырехполюсников
- •34) Принципы согласования нагрузки. Характеристические (вторичные) параметры четырёхполюсников и их связь с первичными параметрами
- •35) Экспериментальное определение первичных и вторичных параметров четырёхполюсников
- •37) Транзистор как четырёхполюсник
- •40) Виды нелинейных элементов цепей и способы их описания
- •41) Графический метод анализа нелинейных цепей на постоянном токе
- •42) Графический метод анализа нелинейных цепей на переменном токе
- •Графический метод с использованием характеристик для мгновенных значений
- •Решение
- •43) Аналитический метод анализа нелинейных цепей
- •44) Понятие о режимах малого и большого сигнала
- •45) Магнитные цепи
- •Характеристики ферромагнитных материалов
- •Основные законы магнитных цепей
- •46) Методы анализа магнитных цепей
- •Регулярные методы расчета
- •1. Прямая” задача для неразветвленной магнитной цепи
- •2. “Прямая” задача для разветвленной магнитной цепи
- •Графические методы расчета
- •1. “Обратная” задача для неразветвленной магнитной цепи
- •2. “Обратная” задача для разветвленной магнитной цепи
- •Итерационные методы расчета
- •47) Электромагнитные устройства постоянного тока
- •48) Магнитные цепи переменного тока и методы их анализа
- •49) Методы машинного расчёта нелинейных цепей (итерационные методы)
- •50) Трансформаторы. Схема замещения и её использование для построения векторной диаграммы
- •51) Характеристики трансформатора при его нагрузке
- •52) Устройство машины постоянного тока. Способы и схемы возбуждения
- •54) Асинхронные трёхфазные двигатели. Устройство и принцип действия
- •58) Синхронные электрические машины. Устройство и принцип действия
- •55) Пуск асинхронного двигателя. Рабочие характеристики
- •56) Регулирование частоты вращения асинхронного двигателя
- •57) Асинхронные двигатели при однофазном питании
- •59) Синхронные генераторы. Нагрузочная и регулировочная характеристики
- •60) Синхронные двигатели автоматических устройств. Шаговые двигатели
- •Система пуска синхронного двигателя
- •Шаговый двигатель
Воздушный (линейный) трансформатор
Одним из важнейших элементов электрических цепей является трансформатор, служащий для преобразования величин токов и напряжений. В простейшем случае трансформатор состоит из двух гальванически несвязанных и неподвижных катушек без ферромагнитного сердечника. Такой трансформатор называется воздушным. Он является линейным. Наличие ферромагнитного сердечника обусловило бы нелинейные свойства трансформатора.
На
рис. 3 представлена схема замещения
трансформатора, первичная обмотка
которого включена на напряжение U1, а от
вторичной обмотки получает питание
приемник с сопротивлением
.
В трансформаторе энергия из первичной цепи передается во вторичную посредством магнитного поля. Если в первичной цепи под действием напряжения источника возникает переменный ток, то во вторичной цепи за счет магнитной связи катушек индуцируется ЭДС, вызывающая протекание тока в нагрузке.
По второму закону Кирхгофа для первичной и вторичной цепей трансформатора можно записать
;
.
Таким образом, уравнения воздушного трансформатора имеют вид:
|
(11) |
|
(12) |
где
и
-
активные сопротивления обмоток;
.
Если
уравнения (11) и (12) решить относительно
,
предварительно подставив в (12)
и
обозначив
;
,
то получим
|
(13) |
где
;
-
вносимые активное и реактивное
сопротивления.
Таким
образом, согласно (13) воздушный
трансформатор со стороны первичной
обмотки может рассматриваться как
двухполюсник с сопротивлением
.
Баланс мощностей в цепях с индуктивно связанными элементами
Пусть имеем схему по рис. 4, где А – некоторый активный четырехполюсник. Для данной цепи можно записать
;
.
Обозначим
токи
и
как:
;
.
Тогда для комплексов полных мощностей первой и второй ветвей соответственно можно записать:
;
.
Рассмотрим в этих уравнениях члены со взаимной индуктивностью:
|
(14) |
|
(15) |
где
.
Из (14) и (15) вытекает, что
|
(16) |
|
(17) |
Соотношение
(16) показывает, что активная мощность
передается от первой катушки ко второй.
При этом суммарная реактивная мощность,
обусловленная взаимной индукцией, равна
нулю, т.к.
.
Это означает, что на общий баланс активной
мощности цепи индуктивно связанные
элементы не влияют.
Суммарная реактивная мощность, обусловленная взаимоиндукцией, равна
.
Таким образом, общее уравнение баланса мощностей с учетом индуктивно связанных элементов имеет вид
|
(18) |
где знак “+” ставится при согласном включении катушек, а “-” – при встречном.
Расчет разветвленных цепей при наличии взаимной индуктивности может быть осуществлен путем составления уравнений по законам Кирхгофа или методом контурных токов. Непосредственное применение метода узловых потенциалов для расчета таких цепей неприемлемо, поскольку в этом случае ток в ветви зависит также от токов других ветвей, которые наводят ЭДС взаимной индукции.
В качестве примера расчета цепей с индуктивно связанными элементами составим контурные уравнения для цепи на рис. 5:
Чтобы
обойти указанное выше ограничение в
отношении применения метода узловых
потенциалов для расчета рассматриваемых
схем можно использовать эквивалентные
преобразования, которые иллюстрируют
схемы на рис. 6, где цепь на рис. 6,б
эквивалентна цепи на рис. 6,а. При этом
верхние знаки ставятся при согласном
включении катушек, а нижние – при
встречном.