Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
осиповой.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.36 Mб
Скачать

3. Химическая посуда и другие принадлежности

П рименяемая в лабораториях химическая посуда может быть разделена на ряд групп. По назначению посуду можно разделить на посуду общего назначения, специального назначения и мерную. По материалу — на посуду из простого стекла, специального стекла, из кварца.

К группе общего назначения относятся те предметы, которые всегда должны быть в лабораторий и без которых нельзя провести большинство работ. Такими являются: пробирки, воронки простые и делительные, стаканы, плоскодонные колбы, кристаллизаторы, конические колбы (Эрленмейера), колбы Бунзена, холодильники, реторты, колбы для дистиллированной воды, тройники, краны.

К группе специального назначения относятся те предметы, которые употребляются для одной какой-либо цели, например: аппарат Киппа, аппарат Сокслета, прибор Кьельдаля, дефлегматоры, склянки Вульфа, склянки Тищенко, пикнометры, ареометры, склянки Дрекселя, кали-аппараты, прибор для определения двуокиси углерода, круглодонные колбы, специальные холодильники, прибор для определения молекулярного веса, приборы для определения температуры плавления и кипения и др.

К мерной посуде относятся: мерные цилиндры и мензурки, пипетки, бюретки и мерные колбы.

Посуда общего назначения

Пробирки (рис. 2) представляют собой узкие цилиндрической формы сосуды с закругленным дном; они бывают различной величины и диаметра и из различного стекла. «Обычные» лабораторные пробирки изготовляют из легкоплавкого стекла, но для особых работ, когда требуется нагревание до высоких температур, пробирки изготовляют из тугоплавкого стекла или кварца.

Кроме обычных, простых пробирок, применяют также градуированные и центрифужные конические (рис. 3) пробирки.

Для хранения пробирок, находящихся в работе, служат специальные деревянные, пластмассовые или металлические штативы (рис. 4).

Пробирки применяют для проведения главным образом аналитических или микрохимических работ. При проведении реакций в пробирке реактивы не следует применять в слишком большом количестве. Совершенно недопустимо, чтобы пробирка была наполнена до краев.

Иногда в пробирку нужно ввести твердое вещество (порошки, кристаллы и т. п.), для этого полоску бумаги шириной чуть меньше диаметра пробирки складывают вдвое по длине и в полученный совочек насыпают нужное количество твердого вещества.

Пробирку держат в левой руке, наклонив ее горизонтально, и вводят в нее совочек почти до дна (рис. 5). Затем пробирку ставят вертикально и слегка ударяют по ней. Когда все твердое вещество высыпется, бумажный совочек вынимают.

Для перемешивания налитых реактивов пробирку держат большим и указательным пальцами левой руки за верхний конец и поддерживают ее средним пальцем, а указательным пальцем правой руки ударяют косым ударом по низу пробирки. Этого достаточно, чтобы содержимое ее было хорошо перемешано. Совершенно недопустимо закрывать пробирку пальцем и встряхивать ее в таком виде; при этом можно не только ввести что-либо постороннее в жидкость, находящуюся в пробирке, но иногда и повредить кожу пальца, получить ожог и пр. Если пробирка наполнена жидкостью больше чем на половину, содержимое перемешивают стеклянной палочкой.

Если пробирку нужно нагреть, ее следует зажать в держателе (рис. 6).

При неумелом и сильном нагревании пробирки жидкость быстро вскипает и выплескивается из нее, поэтому нагревать нужно осторожно. Когда начнут появляться пузырьки, пробирку следует отставить и, держа ее не в пламени горелки, а около него или над ним, продолжать нагревание горячим воздухом. При нагревании открытый конец пробирки должен быть обращен в сторону от работающего и от соседей по столу.

Когда не требуется сильного нагрева, пробирку с нагреваемой жидкостью лучше опустить в горячую воду. Если работают с маленькими пробирками (для полумикроанализа), то нагревают их только в горячей воде, налитой в стеклянный стакан соответствующего размера (емкостью не больше 100 мл).

Химические воронки (рис. 5) служат для переливания - жидкостей, для фильтрования и т. д. Химические воронки выпускают различных размеров, верхний диаметр их составляет 35, 55, 70, 100, 150, 200, 250 и 300 мм.

Обычные воронки имеют ровную внутреннюю стенку, но для ускоренного фильтрования иногда применяют воронки с ребристой внутренней поверхностью. Воронки для фильтрования всегда имеют угол 60° и срезанный длинный конец. При работе воронки устанавливают или в специальном штативе, или в кольце на обычном лабораторном.

Для фильтрования в стакан полезно сделать простой держатель для воронки (рис.7). Для этого из листового алюминия толщиной около 2 мм вырезают полоску длиной 70—80 мм и шириной 20 мм. На одном из концов полоски просверливают отверстие диаметром 12—13 мм и полоску сгибают так, как показано на рис.

Если воронка плотно прилегает к горлу сосуда, в который переливают жидкость, то переливание затрудняется, так как внутри сосуда создается повышенное давление. Воронку время от времени нужно приподнимать. Еще лучше сделать между воронкой и горлом сосуда щель, вложив между ними, например, кусочек бумаги. При этом нужно следить, чтобы прокладка не попала в

сосуд. Целесообразнее применять проволочный треугольник, который можно сделать самому. Этот треугольник помещают на горло сосуда и затем вставляют воронку.

Существуют специальные резиновые или пластмассовые насадки на горлышко посуды, которые обеспечивают сообщение внутренней части колбы с наружной атмосферы (рис. 8).

Рис. 8. Крепление воронки при переливании

жидкости в колбу

Капельные воронки (рис. 9) в большинстве случаев с длинным концом. Эти воронки применяют при многих работах, когда вещество добавляют в реакционную массу небольшими порциями или по каплям. Поэтому они обычно составляют часть прибора. Воронки укрепляют в горле колбы на шлифе или при помощи корковой либо резиновой пробки.

Перед работой с делительной или капельной воронкой шлиф стеклянного крана нужно осторожно смазать вазелином или специальной смазкой. Это дает возможность' открывать кран легко и без усилий, что очень важно, так как если кран открывается туго, то можно при открывании сломать его или повредить весь прибор. Смазку нужно наносить очень тонким слоем так, чтобы при поворачивании крана она не попадала в трубку воронки или внутрь отверстия крана.

Рис. 9. Капельные воронки

Для более равномерного стекания капель жидкости из капельной воронки и для наблюдения за скоростью подачи жидкости применяют капельные воронки с насадкой.

Делительные воронки (рис. 10) Длительные воронки очень похожи на капельные, но бывают чаще всего цилиндрической формы со значительно укороченным концом. Применяют их для разделения несмешивающихся жидкостей.

Рис.10. Делительные воронки

Химические стаканы (рис. 11) – тонкостенные цилиндры различной емкости. Они бывают двух видов: с носиком и без него. Такие стаканы следует нагревать только через асбестированную сетку или на водяной бане. Химические стаканы применяют при самых разнообразных работах и особенно часто при аналитических.

Рис. 11. Тонкостенные цилиндры с носиком и без него

Плоскодонные колбы (рис. 12) – их применяют для различных целей при многих работах, а также для хранения дистиллированной воды и раствора. Плоскодонные колбы можно нагревать только через асбесированную сетку или на водяной бане.

Рис. 11. Плоскодонная колба

Промывалки (рис. 12). Для промывания осадков дистиллированной водой или каким-либо раствором и для смывания осадков применяют промывалки. Для этого к горлу колбы подбирают резиновую пробку, в которой просверливают два отверстия. В одно из них вставляют трубку, изогнутую под острым углом; при

этом один конец трубки должен доходить почти до дна колбы, а другой конец должен быть оттянут. В другое отверстие вставляют трубку, изогнутую под тупым углом. При работе конец короткой трубки, изогнутой под тупым углом, берут в рот и вдувают в колбу воздух, из другой трубки при этом льется струя жидкости.

Рис. 12. Промывалки

Конические колбы (рис. 13) находят широкое применение при аналитических работах (титрование). Они бывают различной емкости, с носиками и без носиков, узкогорлые и широкогорлые. Конические колбы, снабженные притертой пробкой, называют «колбами для определения йодного числа». Их применяют также при титрованиях по методу иодометрии.

Рис. 13. Конические колбы

Нагревать колбы следует только через асбестированную сетку. Нередко горло конической колбы бывает необходимо закрыть. Для этого можно пользоваться часовыми стеклами соответствующего размера, но значительно удобнее применять стеклянную крышку. Колбу, закрытую такой крышкой, можно

вращать для перемешивания содержимого ее и сильно наклонять. Рекомендуются также стеклянные крышки. Такие колпаки удобны для колб, в которых хранят дистиллированную воду или другие реактивы, так как хорошо защищают их от пыли и попадания посторонних веществ.

Колбы для отсасывания (рис. 14) (Бунзена) употребляют в тех случаях, когда фильтрование ведут с применением вакуум-насоса. Колба имеет тубус, находящийся в верхней части ее; тубус соединяют резиновой трубкой с предохранительной склянкой, а затем с вакуум-насосом. В горло колбы вставляют воронку, укрепленную в резиновой пробке. Колбы для отсасывания бывают различной емкости и формы. Чаще всего в лабораториях используются колбы конической формы как наиболее устойчивые и удобные.

Рис. 14. Колба для фильтрования под вакуумом

При фильтровании больших количеств жидкости в колбе собирается много фильтрата, для сливания которого приходится разбирать установку. В таких случаях удобнее пользоваться колбами Бунзена с краном, расположенным около дна. При использовании таких колб фильтрат сливают через кран в подготовленный приемник, закрыв предварительно вакуум-насос. Колбы Бунзена делают из толстого стекла, так как иначе при работе они могут быть раздавлены атмосферным давлением. Работающие колбы Бунзена (во избежание несчастного случая) рекомендуется закрывать полотенцем или ящиком из толстого картона или жести.

Колбы Бунзена, еще не бывшие в употреблении, следует предварительно проверить. Вначале колбу осматривают снаружи. Если на ней будут обнаружены царапины, колбу применять для работ с вакуумом нельзя, так как при создании вакуума она обязательно лопнет. Затем колбу закрывают резиновой пробкой,

завертывают полотенцем или же помещают в предохранительный ящик и только после этого присоединяют к вакуум-насосу. В пробку колбы полезно вставить стеклянную трубку, один конец которой оттянут в капилляр. При помощи вакуум-насоса нужно добиться такого разрежения, при котором колбу будут обычно использовать, и выдержать под вакуумом не менее 15 мин. Нужно также проверить, нет ли на столе кусочков металла или твердых веществ, которые могут поцарапать дно колбы. Для работы с разрежением можно применять только проверенные колбы Бунзена.

Реторты (рис. 15) бывают двух видов: без тубуса и с тубусом. Последний — с притертой пробкой или без нее.

Рис. 15. Реторты

При работе с ретортами, имеющими тубус с притертой пробкой, нужно помнить, что тотчас после прекращения нагревания пробку следует вынуть.

Кристаллизаторы тонкостенные стеклянные плоскодонные сосуды различных диаметров и емкости (рис. 16).

Рис. 16. Кристаллизатор

Их применяют при перекристаллизации веществ, а иногда в них проводят выпаривание. Нагревать кристаллизаторы можно только на водяной бане.

Холодильники (рис. 17) — приборы, применяемые для охлаждения и конденсации паров.

Рис. 17.  Холодильники: а - прямой; б - обратный змеевиковый;

в - обратный шариковый; г - для больших перепадов температур (Димрота)

В зависимости от условий работы жидкость, образующаяся в холодильнике при охлаждении паров (конденсат), должна или отводиться в приемник, или возвращаться в тот сосуд, в котором проводят нагревание. Это различие в назначении холодильников определяет их форму и название. Холодильники, предназначенные для собирания конденсата, называют прямыми или нисходящими.

Прямые холодильники (Либиха). Очень распространены в лабораториях холодильники Либиха (рис. 18), состоящие из длинной стеклянной трубки (фор-штоса), один конец которой расширен. Эту трубку пропускают через стеклянную или металлическую рубашку, или муфту, и закрепляют отрезками резиновой трубки, насаженными на концы муфты. Иногда встречаются холодильники Либиха, у которых холодильная трубка спаяна с рубашкой.

На концах муфты (перпендикулярно к ее оси) расположено по одному отводу; на них надевают резиновые трубки, одну из которых, находящуюся около узкого конца форштоса, соединяют с водопроводным краном, а другую отводят в сточную трубу. При таком

присоединении трубок вода в холодильнике движется навстречу парам охлаждаемой жидкости.

Присоединяя холодильник, необходимо соблюдать следующее правило: вода должна поступать в холодильник всегда с нижнего опущенного конца и выходить из верхнего приподнятого. Холодильная рубашка (муфта) должна быть всегда заполнена водой.

Резиновые трубки, служащие для соединения форштоса с холодильной рубашкой, должны быть обвязаны тонкой проволокой или бечевкой, чтобы вода в этом месте не просачивалась.

При сборке холодильника прежде всего нужно подобрать соединительные резиновые трубки, надеть их на холодильную рубашку и, смазав внутренние стенки их.

Обратные холодильники – при долгом употреблении в холодильной рубашке часто образуется красновато-желтый налет окислов железа, попадающих с водой из водопроводных труб. Налет мешает видеть холодильную трубку, и его нужно удалять. Для этого холодильник отъединяют от водопроводного крана, выпускают всю воду и наливают в холодильную рубашку 10—16%-ную соляную кислоту; при этом на резиновые трубки около отводов надевают зажимы. Осторожно поворачивая холодильник, растворяют в соляной кислоте налет-окислов железа, затем кислоту выливают, холодильник снова соединяют с водопроводом и пропускают воду в течение 5—6 мин.

Перегонять жидкость, применяя холодильник Либиха, можно, только когда температура ее паров не превышает 150° С.

Обратные холодильники могут быть шариковыми (холодильники Аллина), змеевиковыми и других форм. У шариковых холодильников трубка состоит из шарообразных расширений, а у змеевиковых свернута в виде спирали. Такая форма трубки увеличивает поверхность охлаждения, и при этом происходит более полная конденсация паров.

Холодильник Аллина устанавливают только в вертикальном положении, но не в наклонном, так как в последнем случае в шариках будет собираться сконденсированная жидкость, мешающая правильному отбору фракций. Обратный холодильник можно присоединять к колбе и без пробки или шлифа. Для этого трубка холодильника должна входить в горло колбы неплотно, с зазором около 0,5 мм. В этом зазоре конденсируются пары нагреваемой жидкости, и слой ее создает герметичность при кипячений жидкости в колбе. Герметизирующий слой жидкости при кипячении не обновляется. Особенно удобно применение

такого способа при длительном кипячении растворов кислот или щелочей, т. е. веществ, наиболее опасных для шлифов. Такое соединение пригодно не только для обратных холодильников, но и для головок колонок полной конденсации, аппаратов Сокслета и т. п.

Ш ариковый холодильник Сокслета чаще всего применяют как обратный. Охлаждающая вода поступает в холодильник через левый отвод во внутреннюю шарообразную полость и вытекает из правого отростка. Пары жидкости проходят между внутренней поверхностью и наружной стенкой. Таким образом, пары охлаждаются сразу с обеих поверхностей: с наружной — воздухом, с внутренней — водой.

Имеется ряд специальных холодильников; например, применяют холодильники, у которых холодильная трубка имеет вид спирали.

Холодильник Димрота (рис. 19) является универсальным, так как его можно применять в качестве и нисходящего, и обратного. Холодильник выдерживает значительные перепады температур.

Сифоны – приспособления для переливания жидкостей. При работе с сифоном, приведенным конец 2 опускают в переливаемую жидкость, конец 3 закрывают пальцем или же в тех случаях, когда приходится переливать едкие жидкости, на него надевают резиновую трубку с зажимом, а через конец всасывают жидкость ртом или при помощи водоструйного насоса.

В одоструйные вакуум насосы (рис. 20) Необходимыми приборами в лабораториях являются водоструйные вакуум-насосы. Их применяют для ускорения фильтрования, при перегонке для создания вакуума над кипящей жидкостью и т. д.

Рис. 20. Водоструйные

стеклянные вакуум-насосы

Нагнетательные водоструйные насосы — приборы, при помощи которых можно получать струю воздуха, захватываемого водой из внешней атмосферы. Водоструйный насос состоит из двух частей: верхней, являющейся обычным водоструйным вакуум-насосом, и нижней, присоединенной при помощи пробки, лучше резиновой. Чтобы надеть пробку на водоотвод насоса, нужно просверлить в пробке отверстие соответствующего диаметра и разрезать ее пополам. Пробка должна быть прочно укреплена, поэтому ее привязывают к нижней части прибора. В этой части насоса воздух отделяется от воды и выходит через отросток. Для выделения воздуха из воды требуется некоторое время, вода немного задерживается в расширенной части и вытекает через сточный отросток, на который надевают кусок резиновой трубки с зажимом Гофмана (винтовым). Зажимом регулируют сток воды и поддерживают такой уровень воды в шаре, при котором получается струя воздуха нужной силы.

В случае необходимости для изготовления нагнетательного водоструйного насоса можно использовать и небольшую склянку Вульфа с двумя горлами и тубусом внизу.