
- •Features
- •1. Pin Configurations
- •2. Overview
- •2.1 Block Diagram
- •2.2 Pin Descriptions
- •2.2.3 Port B (PB7:PB0) – XTAL1/XTAL2/TOSC1/TOSC2
- •2.2.4 Port C (PC5:PC0)
- •2.2.5 PC6/RESET
- •2.2.6 Port D (PD7:PD0)
- •2.2.7 RESET
- •2.2.9 AREF
- •2.2.10 ADC7:6 (TQFP and QFN/MLF Package Only)
- •3. Resources
- •4. Data Retention
- •5. About Code Examples
- •6. AVR CPU Core
- •6.1 Overview
- •6.2 Arithmetic Logic Unit – ALU
- •6.3 Status Register
- •6.3.1 SREG – The AVR Status Register
- •6.4 General Purpose Register File
- •6.5 Stack Pointer
- •6.5.1 SPH and SPL – Stack Pointer High and Low Register
- •6.6 Instruction Execution Timing
- •6.7 Reset and Interrupt Handling
- •6.7.1 Interrupt Response Time
- •7. AVR Memories
- •7.1 Overview
- •7.3 SRAM Data Memory
- •7.3.1 Data Memory Access Times
- •7.4 EEPROM Data Memory
- •7.4.1 EEPROM Read/Write Access
- •7.5 I/O Memory
- •7.6 Register Description
- •7.6.1 EEARH and EEARL – The EEPROM Address Register
- •7.6.2 EEDR – The EEPROM Data Register
- •7.6.3 EECR – The EEPROM Control Register
- •7.6.5 Preventing EEPROM Corruption
- •8. System Clock and Clock Options
- •8.1 Clock Systems and their Distribution
- •8.2 Clock Sources
- •8.3 Crystal Oscillator
- •8.5 External RC Oscillator
- •8.6 Calibrated Internal RC Oscillator
- •8.7 External Clock
- •8.8 Timer/Counter Oscillator
- •8.9 Register Description
- •8.9.1 OSCCAL – Oscillator Calibration Register
- •9. Power Management and Sleep Modes
- •9.1 Sleep Modes
- •9.2 Idle Mode
- •9.3 ADC Noise Reduction Mode
- •9.6 Standby Mode
- •9.7 Minimizing Power Consumption
- •9.7.2 Analog Comparator
- •9.7.4 Internal Voltage Reference
- •9.7.5 Watchdog Timer
- •9.7.6 Port Pins
- •9.8 Register Description
- •9.8.1 MCUCR – MCU Control Register
- •10. System Control and Reset
- •10.1 Resetting the AVR
- •10.2 Reset Sources
- •10.2.2 External Reset
- •10.2.4 Watchdog Reset
- •10.3 Internal Voltage Reference
- •10.4 Watchdog Timer
- •10.5 Timed Sequences for Changing the Configuration of the Watchdog Timer
- •10.5.1 Safety Level 1 (WDTON Fuse Unprogrammed)
- •10.5.2 Safety Level 2 (WDTON Fuse Programmed)
- •10.6 Register Description
- •10.6.1 MCUCSR – MCU Control and Status Register
- •10.6.2 WDTCR – Watchdog Timer Control Register
- •11. Interrupts
- •11.1 Interrupt Vectors in ATmega8A
- •11.1.1 Moving Interrupts Between Application and Boot Space
- •11.2 Register Description
- •11.2.1 GICR – General Interrupt Control Register
- •12. I/O Ports
- •12.1 Overview
- •12.2 Ports as General Digital I/O
- •12.2.1 Configuring the Pin
- •12.2.2 Reading the Pin Value
- •12.2.3 Digital Input Enable and Sleep Modes
- •12.2.4 Unconnected pins
- •12.3 Alternate Port Functions
- •12.3.1 SFIOR – Special Function IO Register
- •12.3.2 Alternate Functions of Port B
- •12.3.3 Alternate Functions of Port C
- •12.3.4 Alternate Functions of Port D
- •12.4 Register Description
- •12.4.1 PORTB – The Port B Data Register
- •12.4.2 DDRB – The Port B Data Direction Register
- •12.4.3 PINB – The Port B Input Pins Address
- •12.4.4 PORTC – The Port C Data Register
- •12.4.5 DDRC – The Port C Data Direction Register
- •12.4.6 PINC – The Port C Input Pins Address
- •12.4.7 PORTD – The Port D Data Register
- •12.4.8 DDRD – The Port D Data Direction Register
- •12.4.9 PIND – The Port D Input Pins Address
- •13. External Interrupts
- •13.1 Register Description
- •13.1.1 MCUCR – MCU Control Register
- •13.1.2 GICR – General Interrupt Control Register
- •13.1.3 GIFR – General Interrupt Flag Register
- •14. 8-bit Timer/Counter0
- •14.1 Features
- •14.2 Overview
- •14.2.1 Registers
- •14.2.2 Definitions
- •14.3 Timer/Counter Clock Sources
- •14.4 Counter Unit
- •14.5 Operation
- •14.6 Timer/Counter Timing Diagrams
- •14.7 Register Description
- •14.7.1 TCCR0 – Timer/Counter Control Register
- •14.7.2 TCNT0 – Timer/Counter Register
- •14.7.3 TIMSK – Timer/Counter Interrupt Mask Register
- •14.7.4 TIFR – Timer/Counter Interrupt Flag Register
- •15. Timer/Counter0 and Timer/Counter1 Prescalers
- •15.1 Overview
- •15.2 Internal Clock Source
- •15.3 Prescaler Reset
- •15.4 External Clock Source
- •15.5 Register Description
- •15.5.1 SFIOR – Special Function IO Register
- •16. 16-bit Timer/Counter1
- •16.1 Features
- •16.2 Overview
- •16.2.1 Registers
- •16.2.2 Definitions
- •16.2.3 Compatibility
- •16.3.1 Reusing the Temporary High Byte Register
- •16.4 Timer/Counter Clock Sources
- •16.5 Counter Unit
- •16.6 Input Capture Unit
- •16.6.1 Input Capture Pin Source
- •16.6.2 Noise Canceler
- •16.6.3 Using the Input Capture Unit
- •16.7 Output Compare Units
- •16.7.1 Force Output Compare
- •16.7.2 Compare Match Blocking by TCNT1 Write
- •16.7.3 Using the Output Compare Unit
- •16.8 Compare Match Output Unit
- •16.8.1 Compare Output Mode and Waveform Generation
- •16.9 Modes of Operation
- •16.9.1 Normal Mode
- •16.9.2 Clear Timer on Compare Match (CTC) Mode
- •16.9.3 Fast PWM Mode
- •16.9.4 Phase Correct PWM Mode
- •16.9.5 Phase and Frequency Correct PWM Mode
- •16.10 Timer/Counter Timing Diagrams
- •16.11 Register Description
- •16.11.1 TCCR1A – Timer/Counter 1 Control Register A
- •16.11.2 TCCR1B – Timer/Counter 1 Control Register B
- •16.11.3 TCNT1H and TCNT1L – Timer/Counter 1
- •16.11.4 OCR1AH and OCR1AL– Output Compare Register 1 A
- •16.11.5 OCR1BH and OCR1BL – Output Compare Register 1 B
- •16.11.6 ICR1H and ICR1L – Input Capture Register 1
- •17. 8-bit Timer/Counter2 with PWM and Asynchronous Operation
- •17.1 Features
- •17.2 Overview
- •17.2.1 Registers
- •17.2.2 Definitions
- •17.3 Timer/Counter Clock Sources
- •17.4 Counter Unit
- •17.5 Output Compare Unit
- •17.5.1 Force Output Compare
- •17.5.2 Compare Match Blocking by TCNT2 Write
- •17.5.3 Using the Output Compare Unit
- •17.6 Compare Match Output Unit
- •17.6.1 Compare Output Mode and Waveform Generation
- •17.7 Modes of Operation
- •17.7.1 Normal Mode
- •17.7.2 Clear Timer on Compare Match (CTC) Mode
- •17.7.3 Fast PWM Mode
- •17.7.4 Phase Correct PWM Mode
- •17.8 Timer/Counter Timing Diagrams
- •17.9 Asynchronous Operation of the Timer/Counter
- •17.9.1 Asynchronous Operation of Timer/Counter2
- •17.10 Timer/Counter Prescaler
- •17.11 Register Description
- •17.11.1 TCCR2 – Timer/Counter Control Register
- •17.11.2 TCNT2 – Timer/Counter Register
- •17.11.3 OCR2 – Output Compare Register
- •17.11.4 ASSR – Asynchronous Status Register
- •17.11.5 TIMSK – Timer/Counter Interrupt Mask Register
- •17.11.6 TIFR – Timer/Counter Interrupt Flag Register
- •17.11.7 SFIOR – Special Function IO Register
- •18. Serial Peripheral Interface – SPI
- •18.1 Features
- •18.2 Overview
- •18.3 SS Pin Functionality
- •18.3.1 Slave Mode
- •18.3.2 Master Mode
- •18.4 Data Modes
- •18.5 Register Description
- •18.5.1 SPCR – SPI Control Register
- •18.5.2 SPSR – SPI Status Register
- •18.5.3 SPDR – SPI Data Register
- •19. USART
- •19.1 Features
- •19.2 Overview
- •19.2.1 AVR USART vs. AVR UART – Compatibility
- •19.3 Clock Generation
- •19.3.1 Internal Clock Generation – The Baud Rate Generator
- •19.3.2 Double Speed Operation (U2X)
- •19.3.3 External Clock
- •19.3.4 Synchronous Clock Operation
- •19.4 Frame Formats
- •19.4.1 Parity Bit Calculation
- •19.5 USART Initialization
- •19.6 Data Transmission – The USART Transmitter
- •19.6.1 Sending Frames with 5 to 8 Data Bits
- •19.6.2 Sending Frames with 9 Data Bits
- •19.6.3 Transmitter Flags and Interrupts
- •19.6.4 Parity Generator
- •19.6.5 Disabling the Transmitter
- •19.6.6 Data Reception – The USART Receiver
- •Receiving Frames with 5 to 8 Data Bits
- •19.6.7 Receiving Frames with 9 Data Bits
- •19.6.8 Receive Compete Flag and Interrupt
- •19.6.9 Receiver Error Flags
- •19.6.10 Parity Checker
- •19.6.11 Disabling the Receiver
- •19.7 Asynchronous Data Reception
- •19.7.1 Asynchronous Clock Recovery
- •19.7.2 Asynchronous Data Recovery
- •19.7.3 Asynchronous Operational Range
- •19.8.1 Using MPCM
- •19.9 Accessing UBRRH/UCSRC Registers
- •19.9.1 Write Access
- •19.9.2 Read Access
- •19.10 Register Description
- •19.10.1 UDR– USART I/O Data Register
- •19.10.2 UCSRA – USART Control and Status Register A
- •19.10.3 UCSRB – USART Control and Status Register B
- •19.10.4 UCSRC – USART Control and Status Register C
- •19.10.5 UBRRL and UBRRH – USART Baud Rate Registers
- •19.11 Examples of Baud Rate Setting
- •20. Two-wire Serial Interface
- •20.1 Features
- •20.2 Overview
- •20.2.1 SCL and SDA Pins
- •20.2.2 Bit Rate Generator Unit
- •20.2.3 Bus Interface Unit
- •20.2.4 Address Match Unit
- •20.2.5 Control Unit
- •20.3.1 TWI Terminology
- •20.3.2 Electrical Interconnection
- •20.4 Data Transfer and Frame Format
- •20.4.1 Transferring Bits
- •20.4.2 START and STOP Conditions
- •20.4.3 Address Packet Format
- •20.4.4 Data Packet Format
- •20.4.5 Combining Address and Data Packets into a Transmission
- •20.6 Using the TWI
- •20.6.1 Transmission Modes
- •20.6.2 Master Transmitter Mode
- •20.6.3 Master Receiver Mode
- •20.6.4 Slave Receiver Mode
- •20.6.5 Slave Transmitter Mode
- •20.6.6 Miscellaneous States
- •20.6.7 Combining Several TWI Modes
- •20.8 Register Description
- •20.8.1 TWBR – TWI Bit Rate Register
- •20.8.2 TWCR – TWI Control Register
- •20.8.3 TWI Status Register – TWSR
- •20.8.4 TWDR – TWI Data Register
- •20.8.5 TWAR – TWI (Slave) Address Register
- •21. Analog Comparator
- •21.1 Overview
- •21.2 Analog Comparator Multiplexed Input
- •21.3 Register Description
- •21.3.1 SFIOR – Special Function IO Register
- •21.3.2 ACSR – Analog Comparator Control and Status Register
- •22. Analog-to-Digital Converter
- •22.1 Features
- •22.2 Overview
- •22.3 Starting a Conversion
- •22.4 Prescaling and Conversion Timing
- •22.5 Changing Channel or Reference Selection
- •22.5.1 ADC Input Channels
- •22.5.2 ADC Voltage Reference
- •22.6 ADC Noise Canceler
- •22.6.1 Analog Input Circuitry
- •22.6.2 Analog Noise Canceling Techniques
- •22.6.3 ADC Accuracy Definitions
- •22.7 ADC Conversion Result
- •22.8 Register Description
- •22.8.1 ADMUX – ADC Multiplexer Selection Register – ADMUX
- •22.8.2 ADCSRA – ADC Control and Status Register A
- •22.8.3 ADCL and ADCH – The ADC Data Register
- •23. Boot Loader Support – Read-While-Write Self-Programming
- •23.1 Features
- •23.2 Overview
- •23.3 Application and Boot Loader Flash Sections
- •23.3.1 Application Section
- •23.3.2 BLS – Boot Loader Section
- •23.5 Boot Loader Lock Bits
- •23.6 Entering the Boot Loader Program
- •23.8.1 Performing Page Erase by SPM
- •23.8.2 Filling the Temporary Buffer (Page Loading)
- •23.8.3 Performing a Page Write
- •23.8.4 Using the SPM Interrupt
- •23.8.5 Consideration While Updating BLS
- •23.8.7 Setting the Boot Loader Lock Bits by SPM
- •23.8.8 EEPROM Write Prevents Writing to SPMCR
- •23.8.9 Reading the Fuse and Lock Bits from Software
- •23.8.10 Preventing Flash Corruption
- •23.8.11 Programming Time for Flash when using SPM
- •23.8.12 Simple Assembly Code Example for a Boot Loader
- •23.8.13 Boot Loader Parameters
- •23.9 Register Description
- •23.9.1 Store Program Memory Control Register – SPMCR
- •24. Memory Programming
- •24.1 Program And Data Memory Lock Bits
- •24.2 Fuse Bits
- •24.2.1 Latching of Fuses
- •24.3 Signature Bytes
- •24.4 Calibration Byte
- •24.5 Page Size
- •24.6 Parallel Programming Parameters, Pin Mapping, and Commands
- •24.6.1 Signal Names
- •24.7 Parallel Programming
- •24.7.1 Enter Programming Mode
- •24.7.2 Considerations for Efficient Programming
- •24.7.3 Chip Erase
- •24.7.4 Programming the Flash
- •24.7.5 Programming the EEPROM
- •24.7.6 Reading the Flash
- •24.7.7 Reading the EEPROM
- •24.7.8 Programming the Fuse Low Bits
- •24.7.9 Programming the Fuse High Bits
- •24.7.10 Programming the Lock Bits
- •24.7.11 Reading the Fuse and Lock Bits
- •24.7.12 Reading the Signature Bytes
- •24.7.13 Reading the Calibration Byte
- •24.7.14 Parallel Programming Characteristics
- •24.8 Serial Downloading
- •24.9 Serial Programming Pin Mapping
- •24.9.1 Serial Programming Algorithm
- •24.9.2 Data Polling Flash
- •24.9.3 Data Polling EEPROM
- •24.9.4 SPI Serial Programming Characteristics
- •25. Electrical Characteristics
- •25.1 Absolute Maximum Ratings*
- •25.2 DC Characteristics
- •25.3 Speed Grades
- •25.4 Clock Characteristics
- •25.4.1 External Clock Drive Waveforms
- •25.4.2 External Clock Drive
- •25.5 System and Reset Characteristics
- •25.7 SPI Timing Characteristics
- •25.8 ADC Characteristics
- •26. Typical Characteristics
- •26.1 Active Supply Current
- •26.2 Idle Supply Current
- •26.5 Standby Supply Current
- •26.7 Pin Driver Strength
- •26.8 Pin Thresholds and Hysteresis
- •26.9 Bod Thresholds and Analog Comparator Offset
- •26.10 Internal Oscillator Speed
- •26.11 Current Consumption of Peripheral Units
- •26.12 Current Consumption in Reset and Reset Pulsewidth
- •27. Register Summary
- •28. Instruction Set Summary
- •29. Ordering Information
- •30. Packaging Information
- •31. Errata
- •31.1 ATmega8A, rev. L
- •32. Datasheet Revision History
- •Table of Contents

ATmega8A
Assembly Code Example(1)
USART_ReadUCSRC:
; Read UCSRC
in r16,UBRRH
in r16,UCSRC
ret
C Code Example(1)
unsigned char USART_ReadUCSRC( void )
{
unsigned char ucsrc; /* Read UCSRC */ ucsrc = UBRRH; ucsrc = UCSRC; return ucsrc;
}
Note: 1. See “About Code Examples” on page 6.
The assembly code example returns the UCSRC value in r16.
Reading the UBRRH contents is not an atomic operation and therefore it can be read as an ordinary register, as long as the previous instruction did not access the register location.
19.10 Register Description
19.10.1UDR– USART I/O Data Register
Bit |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
|
|
|
|
|
RXB[7:0] |
|
|
|
UDR (Read) |
|
|
|
|
|
TXB[7:0] |
|
|
|
UDR (Write) |
|
Read/Write |
R/W |
R/W |
R/W |
R/W |
R/W |
R/W |
R/W |
R/W |
|
Initial Value |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
|
The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers share the same I/O address referred to as USART Data Register or UDR. The Transmit Data Buffer Register (TXB) will be the destination for data written to the UDR Register location. Reading the UDR Register location will return the contents of the Receive Data Buffer Register (RXB).
For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the Transmitter and set to zero by the Receiver.
The transmit buffer can only be written when the UDRE Flag in the UCSRA Register is set. Data written to UDR when the UDRE Flag is not set, will be ignored by the USART Transmitter. When data is written to the transmit buffer, and the Transmitter is enabled, the Transmitter will load the data into the Transmit Shift Register when the Shift Register is empty. Then the data will be serially transmitted on the TxD pin.
The receive buffer consists of a two level FIFO. The FIFO will change its state whenever the receive buffer is accessed. Due to this behavior of the receive buffer, do not use Read-Modify- Write instructions (SBI and CBI) on this location. Be careful when using bit test instructions (SBIC and SBIS), since these also will change the state of the FIFO.
156
8159C–AVR–07/09

ATmega8A
19.10.2UCSRA – USART Control and Status Register A
Bit |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
|
|
RXC |
TXC |
UDRE |
FE |
DOR |
PE |
U2X |
MPCM |
UCSRA |
Read/Write |
R |
R/W |
R |
R |
R |
R |
R/W |
R/W |
|
Initial Value |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
|
• Bit 7 – RXC: USART Receive Complete
This flag bit is set when there are unread data in the receive buffer and cleared when the receive buffer is empty (i.e. does not contain any unread data). If the Receiver is disabled, the receive buffer will be flushed and consequently the RXC bit will become zero. The RXC Flag can be used to generate a Receive Complete interrupt (see description of the RXCIE bit).
• Bit 6 – TXC: USART Transmit Complete
This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and there are no new data currently present in the transmit buffer (UDR). The TXC Flag bit is automatically cleared when a transmit complete interrupt is executed, or it can be cleared by writing a one to its bit location. The TXC Flag can generate a Transmit Complete interrupt (see description of the TXCIE bit).
• Bit 5 – UDRE: USART Data Register Empty
The UDRE Flag indicates if the transmit buffer (UDR) is ready to receive new data. If UDRE is one, the buffer is empty, and therefore ready to be written. The UDRE Flag can generate a Data Register Empty interrupt (see description of the UDRIE bit).
UDRE is set after a reset to indicate that the Transmitter is ready.
• Bit 4 – FE: Frame Error
This bit is set if the next character in the receive buffer had a Frame Error when received (i.e., when the first stop bit of the next character in the receive buffer is zero). This bit is valid until the receive buffer (UDR) is read. The FE bit is zero when the stop bit of received data is one. Always set this bit to zero when writing to UCSRA.
• Bit 3 – DOR: Data OverRun
This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the receive buffer is full (two characters), it is a new character waiting in the Receive Shift Register, and a new start bit is detected. This bit is valid until the receive buffer (UDR) is read. Always set this bit to zero when writing to UCSRA.
• Bit 2 – PE: Parity Error
This bit is set if the next character in the receive buffer had a Parity Error when received and the parity checking was enabled at that point (UPM1 = 1). This bit is valid until the receive buffer (UDR) is read. Always set this bit to zero when writing to UCSRA.
• Bit 1 – U2X: Double the USART transmission speed
This bit only has effect for the asynchronous operation. Write this bit to zero when using synchronous operation.
Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effectively doubling the transfer rate for asynchronous communication.
157
8159C–AVR–07/09

ATmega8A
• Bit 0 – MPCM: Multi-processor Communication Mode
This bit enables the Multi-processor Communication mode. When the MPCM bit is written to one, all the incoming frames received by the USART Receiver that do not contain address information will be ignored. The Transmitter is unaffected by the MPCM setting. For more detailed information see “Multi-processor Communication Mode” on page 153.
19.10.3UCSRB – USART Control and Status Register B
Bit |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
|
|
RXCIE |
TXCIE |
UDRIE |
RXEN |
TXEN |
UCSZ2 |
RXB8 |
TXB8 |
UCSRB |
Read/Write |
R/W |
R/W |
R/W |
R/W |
R/W |
R/W |
R |
R/W |
|
Initial Value |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
|
• Bit 7 – RXCIE: RX Complete Interrupt Enable
Writing this bit to one enables interrupt on the RXC Flag. A USART Receive Complete interrupt will be generated only if the RXCIE bit is written to one, the Global Interrupt Flag in SREG is written to one and the RXC bit in UCSRA is set.
• Bit 6 – TXCIE: TX Complete Interrupt Enable
Writing this bit to one enables interrupt on the TXC Flag. A USART Transmit Complete interrupt will be generated only if the TXCIE bit is written to one, the Global Interrupt Flag in SREG is written to one and the TXC bit in UCSRA is set.
• Bit 5 – UDRIE: USART Data Register Empty Interrupt Enable
Writing this bit to one enables interrupt on the UDRE Flag. A Data Register Empty interrupt will be generated only if the UDRIE bit is written to one, the Global Interrupt Flag in SREG is written to one and the UDRE bit in UCSRA is set.
• Bit 4 – RXEN: Receiver Enable
Writing this bit to one enables the USART Receiver. The Receiver will override normal port operation for the RxD pin when enabled. Disabling the Receiver will flush the receive buffer invalidating the FE, DOR and PE Flags.
• Bit 3 – TXEN: Transmitter Enable
Writing this bit to one enables the USART Transmitter. The Transmitter will override normal port operation for the TxD pin when enabled. The disabling of the Transmitter (writing TXEN to zero) will not become effective until ongoing and pending transmissions are completed (i.e., when the Transmit Shift Register and Transmit Buffer Register do not contain data to be transmitted). When disabled, the Transmitter will no longer override the TxD port.
• Bit 2 – UCSZ2: Character Size
The UCSZ2 bits combined with the UCSZ1:0 bit in UCSRC sets the number of data bits (Character Size) in a frame the Receiver and Transmitter use.
• Bit 1 – RXB8: Receive Data Bit 8
RXB8 is the ninth data bit of the received character when operating with serial frames with nine data bits. Must be read before reading the low bits from UDR.
158
8159C–AVR–07/09

ATmega8A
• Bit 0 – TXB8: Transmit Data Bit 8
TXB8 is the ninth data bit in the character to be transmitted when operating with serial frames with nine data bits. Must be written before writing the low bits to UDR.
19.10.4UCSRC – USART Control and Status Register C
Bit |
7 |
6 |
5 |
4 |
3 |
2 |
1 |
0 |
|
|
URSEL |
UMSEL |
UPM1 |
UPM0 |
USBS |
UCSZ1 |
UCSZ0 |
UCPOL |
UCSRC |
Read/Write |
R/W |
R/W |
R/W |
R/W |
R/W |
R/W |
R/W |
R/W |
|
Initial Value |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
|
The UCSRC Register shares the same I/O location as the UBRRH Register. See the “Accessing UBRRH/UCSRC Registers” on page 154 section which describes how to access this register.
• Bit 7 – URSEL: Register Select
This bit selects between accessing the UCSRC or the UBRRH Register. It is read as one when reading UCSRC. The URSEL must be one when writing the UCSRC.
• Bit 6 – UMSEL: USART Mode Select
This bit selects between Asynchronous and Synchronous mode of operation.
Table 19-4. UMSEL Bit Settings
UMSEL |
Mode |
|
|
0 |
Asynchronous Operation |
|
|
1 |
Synchronous Operation |
|
|
• Bit 5:4 – UPM1:0: Parity Mode
These bits enable and set type of Parity Generation and Check. If enabled, the Transmitter will automatically generate and send the parity of the transmitted data bits within each frame. The Receiver will generate a parity value for the incoming data and compare it to the UPM0 setting. If a mismatch is detected, the PE Flag in UCSRA will be set.
Table 19-5. |
UPM Bits Settings |
|
|
UPM1 |
|
UPM0 |
Parity Mode |
|
|
|
|
0 |
|
0 |
Disabled |
|
|
|
|
0 |
|
1 |
Reserved |
|
|
|
|
1 |
|
0 |
Enabled, Even Parity |
|
|
|
|
1 |
|
1 |
Enabled, Odd Parity |
|
|
|
|
• Bit 3 – USBS: Stop Bit Select
This bit selects the number of stop bits to be inserted by the trAnsmitter. The Receiver ignores this setting.
Table 19-6. USBS Bit Settings
USBS |
Stop Bit(s) |
|
|
0 |
1-bit |
|
|
1 |
2-bit |
|
|
159
8159C–AVR–07/09