
- •1 Процесс горения
- •Диффузионное и кинетическое горение
- •1.2. Диффузионное пламя
- •Расход воздуха на горение
- •1.4. Продукты сгорания. Дым
- •1.5. Теплота сгорания
- •1.6. Температура горения
- •1.7. Оценка пожарной опасности веществ и материалов
- •Температура самовоспламенения;
- •Температура самовоспламенения;
- •Температура самовоспламенения;
- •2 Самовоспламенение и возгорание
- •2.1. Кинетика химических реакций
- •2.2. Превращение горючих веществ при нагревании
- •2.3. Теория окисления горючих веществ
- •2.4. Теория Самовоспламенения
- •2.5. Температура самовоспламенения
- •2.6. Процесс возгорания и воспламенения
- •3 Склонность веществ к самовозгоранию
- •3.1. Температура самонагревания
- •3.2. Тепловое самовозгорание
- •3.3. Микробиологическое самовозгорание
- •3.4. Химическое самовозгорание
- •4 Горение смесей газов и паров с воздухом
- •4.1. Теория горения газовых смесей. Давление при взрыве
- •4.2. Концентрационные пределы воспламенения
- •4.3. Методы определения концентрационных пределов
- •5 Горение жидкостей
- •5.1. Испарение жидкостей. Насыщенный пар
- •5.2. Температурные пределы воспламенения. Температура вспышки
- •5.3. Процесс горения жидкостей. Скорость выгорания
- •5.4. Прогрев жидкостей при горении. Вскипание. Выброс
- •6 Горение пылевоздушных смесей
- •6.1. Свойства, определяющие пожароопасность пылей
- •6.2. Теория горения аэровзвесей
- •6.3. Пределы воспламенения аэровзвесей
- •7 Горение твердых веществ
- •7.1 Состав и свойства твердых горючих веществ
- •7.2. Горение древесины
- •7.3. Горение металлов
- •8 Теория химического строения а. М. Бутлерова и классификация органических веществ
- •8.1. Теория химического строения а. М. Бутлерова. Изомерия
- •8.2. Классификация органических веществ
- •9 Свойства и пожарная опасность углеводородов
- •9.1 Предельные углеводороды
- •9.2 Непредельные углеводороды
- •9.3. Ароматические углеводороды
- •9.4 Нефть и нефтепродукты
- •10 Свойства и пожарная опасность органических соединений, содержащих кислород и азот
- •10.1 Спирты и простые эфиры
- •10.2 Альдегиды и кетоны
- •10.3. Карбоновые кислоты
- •10.4 Сложные эфиры карбоновых кислот
- •10.5 Нитросоединения
- •10.6 Сложные эфиры азотной кислоты
- •10.7 Аминосоединения
- •11 Свойства и пожарная опасность элементоорганических соединений
- •11.1 Кремнийорганические соединения
- •11.2 Металлорганические соединения
- •11.3 Фосфорорганические соединения
- •12 Свойства и пожарная опасность полимеров
- •12.1 Синтетические полимеры
- •12.2 Пластические массы
- •12.3 Синтетические волокна
- •12.4 Натуральный и синтетический каучук
- •13 Свойства и пожарная опасность веществ, применяемых в сельском хозяйстве
- •13.1 Классификация веществ, применяемых в сельском хозяйстве
- •13.2 Пестициды
- •13.3 Удобрения
6.2. Теория горения аэровзвесей
Аэровзвеси воспламеняются и горят аналогично газовоздушным смесям. Поэтому их пожарная опасность характеризуется такими же параметрами, как и газовоздушные смеси:
- нижним концентрационным пределом воспламенения,
- минимальным взрывоопасным содержанием кислорода,
- минимальной энергией зажигания,
- максимальным давлением взрыва и скоростью нарастания давления.
Процесс воспламенения аэровзвеси протекает в соответствии с тепловой или цепной теорией самовоспламенения. Для большинства органических пылей характерно протекание под воздействием источника зажигания подготовительных процессов, как и для твердых веществ. Затем начинается окисление, достигается температура самонагревания и происходит самовоспламенение.
Образовавшийся фронт пламени распространяется по аэровзвеси с определенной скоростью, которая зависит от ряда факторов
где — коэффициент Стефана — Больцмана, Вт/(мг • К4) ; Тв — эквивалентная температура излучения; С0 — объемная теплоемкость аэрозоля, Дж/(м2 К); Тв — температура воспламенения частиц, К; Т0 — начальная температура аэрозоля, К.
Скорость распространения фронта пламени возрастает с уменьшением объемной теплоемкости аэровзвеси и повышением ее начальной температуры.
Скорость распространения фронта пламени обратно пропорциональна диаметру частиц аэровзвеси.
Давление при взрыве и скорость его нарастания уменьшаются с увеличением размера пылинок. При крупности пылинок 40—50 мкм
нижний концентрационный предел воспламенения и скорость распрост- ранения пламени мало зависят от диаметра, но с увеличением крупности частиц резко возрастает нижний концентрационный предел воспламене- ния и уменьшается скорость распространения пламени.
Скорость распространения фронта пламени зависит от концентрации пыли. Минимальная скорость распространения пламени достигается при концентрации пыли, на много большей стехиометрической. Это свидетельст- вует о том, что процесс горения пыли несовершенен; сгорают наиболее мелкие частицы пыли, крупные — не успевают разложиться и лишь обугливаются с поверхности.
Скорость распространения пламени при горении пыли зависит от концентрации кислорода в воздухе. С увеличением концентрации О2 скорость распространения пламени возрастает. Максимальная скорость распространения пламени наблюдается в чистом кислороде.
Исследование процесса распространения пламени в аэровзвесях угольной пыли показали, что в трубах или штольнях значительной протяженности возникает ударная волна. Установлено, что при горении каменноугольной пыли скорость распространения ударной волны равна 338 м/с, скорость движения воздуха за ударной волной 30 м/с, скорость пламени 7 м/с, скорость сгоревших газов позади пламени 5 м/с. Этот режим быстрого распространения пламени, до некоторой степени приближающийся к режиму детонации, обусловлен не теплопроводностью или излучением, а сжатием прилегающих к фронту пламени слоев газа и связанным с ним резким повышением температуры. В этом случае процесс распространения взрыва, очевидно, будет определяться свойствами газовой фазы, образовавшейся при сгорании аэровзвесей.
При возникновении даже самой небольшой локальной вспышки аэрогель быстро переходит во взвешенное состояние, что приводит к образованию вторичного, более сильного взрыва пыли. Взрывная ударная волна опережает фронт пламени, переводя во взвешенное состояние по пути своего движения все большие и большие количества пыли, подготавливая среду для распространения пламени и таким образом усиливает взрывной эффект.
При горении аэровзвесей некоторых веществ газообразные продукты не образуются (например, при горении алюминия), и объем газообразных продуктов после взрыва равен объему газообразных веществ до реакции. В этом случае увеличение давления при взрыве объясняется лишь нагреванием.
Давление, возникающее при взрыве аэровзвеси, сопровождается волной сжатия, скорость распространения которой в окружающей среде может изменяться от нескольких сантиметров в секунду до нескольких сотен метров в секунду. Быстрое нарастание давления взрыва является в большинстве случаев достаточным для разрушения и повреждения оборудования.
Пыль-аэрогель можно представить как твердое вещество в состоянии тонкого измельчения. При ее нагревании возникает окисление, которое при определенной скорости реакции переходит в самовоспламенение и горе- ние. Температура самовоспламенения пыли-аэрогеля и процесс горения ее практически не отличаются от температуры самовоспламенения и характера горения твердого вещества.