
- •Бийский технологический институт (филиал)
- •Гидравлика, гидромашины и гидроприводы
- •Часть 2 гидромашины и гидроприводы
- •151001 – Тм, 170104 – вуас, 190603 – ат, 240706 – апхп, 260601 – мапп очной, очно-заочной и заочной форм обучения
- •Содержание
- •1 Гидромашины 7
- •2 Гидроаппаратура 63
- •3 Объемный гидропривод 91
- •4 Следящие гидроприводы 110
- •5 Гидродинамические передачи 117
- •Введение
- •1 Гидромашины
- •Общая классификация и основные параметры гидромашин
- •1.2 Динамические гидромашины
- •1.2.8 Работа насоса на сеть
- •1.3 Объемные гидравлические машины
- •1 Ведущая шестерня; 2, 5 впадины
- •4 Корпус; 6 зуб
- •1,3 Рабочие камеры; 2 перемычка;
- •4 Ротор; 5 плунжеры; 6 корпус
- •4 Нерегулируемый насос; 5 – регулируемый насос;
- •2 Гидроаппаратура
- •2.1 Основные термины, определения и параметры
- •2.2 Гидродроссели
- •1 Плунжер; 2 корпус; 3 винтовая головка; 4 кран;
- •5 Золотник; 6 запорно-регулирующий элемент; 7 седло;
- •8 Заслонка; 9 сопло
- •2.3 Гидроклапаны
- •2.4 Гидрораспределители
- •1 Корпус; 2 золотник; 3, 4 дросселирующие щели
- •3 Объемный гидропривод
- •3.1 Принцип действия и основные понятия
- •3.2 Основные преимущества и недостатки объемных
- •3.3 Принципиальные схемы гидроприводов
- •3.4 Нерегулируемые и регулируемые объемные гидроприводы (общие положения)
- •3.5 Гидроприводы с дроссельным регулированием
- •1 Насос; 2 переливной клапан; 3 гидрораспределитель;
- •4 Гидроцилиндр; 5 гидродроссель; 6 бак
- •3.6 Гидропривод с объемным (машинным) регулированием
- •3.7 Гидропривод с объемно-дроссельным регулированием
- •3.8 Способы стабилизации скорости в гидроприводах
- •3.9 Системы синхронизации движения выходных звеньев
- •4 Следящие гидроприводы (гидроусилители мощности)
- •4.1 Принцип действия и области применения
- •4.2 Следящие гидроприводы с дополнительными каскадами усиления
- •4.3 Электрогидравлические следящие приводы
- •5 Гидродинамические передачи
- •5.1 Общие сведения о гидродинамических передачах
- •5.2 Устройство и рабочий процесс гидромуфты
- •5.3 Устройство и рабочий процесс гидротрансформатора
- •Литература
- •Часть 2. Гидромашины и гидроприводы
- •Курс лекций
А
Рисунок 1.20
Радиально-поршневой
насос
1,3 Рабочие камеры; 2 перемычка;
4 Ротор; 5 плунжеры; 6 корпус
Аксиально-поршневые насосы отличаются от ранее рассмотренных насосов сложностью изготовления и, как следствие, большей стоимостью, но имеют существенно лучшие эксплуатационные характеристики. Они создают давления до 30...40 МПа, могут работать в широком диапазоне частот вращения от 500 до 4000 об/мин и более). Полные КПД этих насосов достигают 0,90...0,92, а объемные КПД – 0,95...0,98. Аксиально-поршневые насосы применяются в авиации, машинах для строительных и дорожных работ, а также в сельскохозяйственном машиностроении и станкостроении.
В радиально-поршневых насосах вытеснителями также являются поршни или плунжеры, но расположенные радиально. На рисунке 1.20 представлена конструктивная схема радиально-поршневого насоса однократного действия. Основным элементом насоса является ротор 4 с плунжерами 5, который вращается относительно корпуса 6 насоса. Ротор 4 установлен в корпусе 6 со смещением оси (с эксцентриситетом е). Полости всасывания и нагнетания располагаются в центре насоса и разделены перемычкой 2.
При работе насоса плунжеры 5 вращаются вместе с ротором 4 и одновременно скользят по корпусу 6. За счет этого и пружин внутри рабочих камер обеспечивается возвратно-поступательное движение плунжеров 5 относительно ротора 4. Когда рабочая камера перемещается из верхнего положения 3 в нижнее 1, ее объем увеличивается. При этом перемещении она через отверстие в роторе 4 соединена с полостью всасывания, поэтому обеспечивается ee заполнение рабочей жидкостью – всасывание. При обратном перемещении – из нижнего положения 1 в
верхнее 3 – объем камеры уменьшается и происходит вытеснение жидкости в полость нагнетания.
Объем рабочей камеры VK
найдем как произведение
площади плунжера
и его рабочего хода
l:
.
Из анализа рисунка
1.20 следует, что l
= 2е. Тогда
с учетом (1.34) получим формулу для рабочего
объема насоса:
.
(1.40)
В формулу (1.40) включена кратность работы k, так как радиально-поршневые насосы могут быть дву- и многократного действия. Это обеспечивается за счет создания на внутренней поверхности корпуса специального профиля (как у пластинчатого насоса двукратного действия, см. рисунок 1.17б), благодаря которому каждый плунжер совершает два или более рабочих ходов за один оборот ротора.
Следует также отметить, что эти насосы однократного действия могут быть регулируемыми. В регулируемом насосе изменение рабочего объема обеспечивается за счет смещения ротора 4 относительно корпуса 6, т. е. за счет изменения величины е.
Радиально-поршневые насосы применяются существенно реже, чем аксиально-поршневые. Их главное отличие от других роторных насосов заключается в том, что они выпускаются с большими рабочими объемами.
1.3.7 Характеристика и способы регулирования объемных насосов
Объемные насосы работают в гидросистемах, включающих помимо самого насоса ряд дополнительных устройств, обеспечивающих его работу с необходимыми параметрами и характеристикой. Характеристикой насоса называют графическую зависимость давления на выходе насоса от его подачи, полученную при постоянной частоте вращения его вала.
Для построения характеристики насоса (рисунок 1.21а) прежде всего необходимо найти его теоретическую (идеальную) подачу, которая при рабочем объеме VO и данной частоте вращения вала п определяется по формуле
.
(1.41)
Такая подача насоса существует при нулевом давлении на выходе насоса (точка А). Из формулы (1.40) следует, что теоретическая подача не зависит от давления насоса, поэтому характеристика идеального объемного насоса представляет собой прямую вертикальную линию I.