
- •Федеральное агентство по образованию
- •Бийский технологический институт (филиал)
- •Часть 1
- •1 Общие положения
- •1.1 Предмет гидравлики, основные понятия и определения
- •1.2 Силы, действующие в жидкости. Давление
- •1.3 Основные физические свойства жидкостей и газов
- •2 Гидростатика
- •2.1 Свойства гидростатического давления. Основное уравнение гидростатики
- •2.2 Устройство и приборы для измерения давления
- •2.3 Сила давления на плоскую стенку
- •2.4 Сила давления на криволинейные стенки. Плавание тел
- •2.5 Относительный покой жидкости
- •3 Кинематика и динамика жидкости
- •3.1 Основные понятия и определения
- •3.2 Расход. Уравнение расхода
- •3.3 Уравнение Бернулли для элементарной струйки идеальной жидкости
- •3.4 Геометрическая и энергетическая иллюстрация уравнения Бернулли
- •3.5 Уравнение Бернулли для потока реальной жидкости
- •3.6 Примеры использования уравнения Бернулли в технике
- •3.7 Режимы течения жидкости в трубах
- •3.8 Теория ламинарного течения в круглых трубах
- •3.9 Турбулентное течение
- •3.10 Местные гидравлические сопротивления
- •3.11 Местные сопротивления при больших и малых числах Рейнольдса. Метод эквивалентной длины
- •4 Истечение жидкости
- •4.1 Истечение через отверстие в тонкой стенке
- •4.2 Истечение под уровень
- •4.3 Истечение через насадки
- •4.4 Истечение жидкости через проходные сечения
- •5 Гидравлический расчет трубопроводов
- •5.1 Простой трубопровод постоянного сечения
- •5.2. Построение характеристики потребного напора простого трубопровода
- •5.3 Соединения простых трубопроводов. Аналитические и графические способы расчета
- •5.4 Трубопровод с насосной подачей
- •6 Особые случаи течения жидкости
- •6.1 Течение капельной жидкости с кавитацией
- •6.2 Течение с облитерацией
- •6.3 Гидравлический удар в трубопроводе
- •Литература
- •Часть 1
- •Курс лекций
5.4 Трубопровод с насосной подачей
Как уже отмечалось, основным способом подачи жидкости в машиностроении является принудительное нагнетание ее насосом. Насосом называется гидравлическое устройство, преобразующее механическую энергию привода в энергию потока рабочей жидкости. В гидравлике трубопровод, в котором движение жидкости обеспечивается за счет насоса, называется трубопроводом с насосной подачей (рису- нок 5.4а).
Целью расчета трубопровода с насосной подачей, как правило, является определение напора, создаваемого насосом (напора насоса). Напором насоса Нн называется полная механическая энергия, переданная
насосом единице веса жидкости. Таким образом, для определения величины Нн необходимо оценить приращение полной удельной энергии жидкости при прохождении ее через насос, т.е.
, (5.9)
где Нвх, Нвых – удельная энергия жидкости соответственно на входе и выходе из насоса.
Рассмотрим работу разомкнутого трубопровода с насосной подачей (см. рисунок 5.4а). Насос перекачивает жидкость из нижнего резервуара А с давлением над жидкостью p0 в другой резервуар Б, в котором давление р3. Высота расположения насоса относительно нижнего уровня жидкости H1 называется высотой всасывания, а трубопровод, по которому жидкость поступает к насосу, всасывающим трубопроводом, или гидролинией всасывания. Высота расположения конечного сечения трубопровода или верхнего уровня жидкости Н2 называется высотой нагнетания, а трубопровод, по которому жидкость движется от насоса, напорным, или гидролинией нагнетания.
Рисунок
5.4 – Схема трубопровода
с насосной подачей (а)
и график определения
рабочей точки (б)
Запишем уравнение Бернулли для потока жидкости во всасывающем трубопроводе, т.е. для сечений 0–0 и 1–1:
, (5.10)
где
–
потери напора во всасывающем трубопроводе.
Уравнение (5.10) является основным для расчета всасывающих трубопроводов. Давление p0 обычно ограничено (чаще всего это атмосферное давление). Поэтому целью расчета всасывающего трубопровода,
как правило, является определение давления перед насосом. Оно должно быть выше давления насыщенных паров жидкости. Это необходимо для исключения возникновения кавитации на входе в насос. Из уравнения (5.10) можно найти удельную энергию жидкости на входе в насос:
.
(5.11)
Запишем уравнение Бернулли для потока жидкости в напорном трубопроводе, т. е. для сечений 2–2 и 3–3:
,
(5.12)
где
– потери напора в
напорном трубопроводе.
Левая часть этого уравнения представляет собой удельную энергию жидкости на выходе из насоса Hвых. Подставив в (5.9) правые части зависимостей (5.11) для Hвх и (5.12) для Hвых, получим
.
(5.13)
Как следует из уравнения (5.13), напор насоса Hн обеспечивает подъем жидкости на высоту (Н1+H2), повышение давления с р0 до p3 и расходуется на преодоление сопротивлений во всасывающем и напорном трубопроводах.
Если в правой части уравнения
(5.13) сумму
обозначить Hст
и заменить
на KQm
, то получим Hн=Hcr+KQm.
Сравним последнее выражение с формулой (5.2), определяющей потребный напор для трубопровода. Очевидна их полная идентичность:
, (5.14)
т.е. насос создает напор, равный потребному напору трубопровода.
Полученное уравнение (5.14) позволяет аналитически определить напор насоса. Однако в большинстве случаев аналитический способ достаточно сложен, поэтому получил распространение графический метод расчета трубопровода с насосной подачей.
Этот метод заключается в
совместном построении на графике
характеристики потребного напора
трубопровода
(или
характеристики трубопровода
)
и характеристики
насоса
.
Под характеристикой насоса понимают
зависимость напора, создаваемого
насосом, от расхода. Точка пересечения
этих зависимостей называется рабочей
точкой гидросистемы
и является результатом графического
решения уравнения (5.14).
На рисунке 5.4б приведен пример такого графического решения. Здесь точка А и есть искомая рабочая точка гидросистемы. Ее координаты определяют напор Hн, создаваемый насосом, и расход Qн жидкости, поступающей от насоса в гидросистему.
Если по каким-то причинам положение рабочей точки на графике не устраивает проектировщика, то это положение можно изменить, если скорректировать какие-либо параметры трубопровода или насоса.