
- •Содержание
- •1 Производство чугуна
- •1.1 Исходные материалы и подготовка их к плавке
- •1.2 Основные физико-химические процессы в современных доменных печах
- •1.3 Продукты доменного производства и области их применения:
- •2 Производство стали
- •2.1 Физико-химические процессы получения стали
- •2.2 Процессы производства стали
- •3 Производство цветных металлов
- •3.1 Производство магния
- •3.2 Производство меди
- •3.3 Производство титана
- •4 Охрана труда и окружающей среды в металлургическом производстве
- •5 Строение и основные свойства металлов и сплавов
- •5.1 Атомно-кристаллическое строение металлов
- •5.2 Понятие о строении сплавов
- •5.3 Нагрузки, напряжения и деформации
- •5.4 Механические свойства
- •5.5 Теоретическая и техническая прочность
- •6 Железо и его сплавы
- •6.1 Влияние легирующих элементов на свойства стали
- •6.2 Конструкционные легированные стали, их маркировка и области применения
- •6.3 Инструментальные стали, их маркировка и области применения
- •6.4 Твердые сплавы и композиционные материалы
- •7 Цветные металлы и сплавы
- •7.1.Алюминий и его сплавы
- •7.2 Магний и его сплавы
- •7.3.Медь и ее сплавы
- •7.4 Титан и его сплавы
- •7.5 Подшипниковые сплавы и материалы
- •8 Неметаллические материалы
- •8.1 Классификация, строение и свойства неметаллических материалов
- •8.2 Типовые термопластичные материалы
- •8.3 Типовые термореактивные материалы
- •8.4 Резиновые материалы, области их применения
- •9 Основные конструктивные и технологические характеристики изделия
- •9.1 Определение детали, размера и понятие о взаимозаменяемости
- •9.2 Точность обработки и качество обработанной поверхности
- •10 Основы технологии термической обработки стали
- •10.1 Виды термической обработки
- •10.2 Виды отжига. Нормализация стали
- •10.3 Закалка и отпуск стали
- •10.4 Термомеханическая обработка стали
- •10.5 Химико-термическая обработка стали
- •11 Литейное производство
- •11.1 Классификация способов изготовления отливок
- •11.2 Эффективность использования металла
- •11.3 Сведения о литейных сплавах
- •11.4 Изготовление отливок из серого, высокопрочного и ковкого чугунов
- •11.5 Особенности изготовления стальных отливок
- •11.6 Особенности изготовления отливов из цветных металлов
- •11.7 Контроль качества отливок. Способы исправления литейных дефектов
- •12 Основы технологии обработки металлов давлением
- •12.1. Классификация способов обработки металлов давлением
- •12.2 Пластичность металлов и сопротивление деформированию
- •13 Прокатка, прессование и волочение
- •13.1 Сущность процесса прокатки
- •13.2 Технологический процесс прокатки
- •14 Ковка и штамповка
- •14.1 Сущность процесса ковки
- •14.2 Сущность процесса горячей объемной штамповки
- •14.3 Классификация способов холодной штамповки
- •15 Основы технологии сварочного производства
- •15.1 Физическая сущность и классификация способов сварки
- •15.2 Свариваемость однородных и разнородных материалов
- •15.3 Сварка углеродистых и легированных сталей и чугунов
- •15.4 Сварка меди, алюминия, титана и их сплавов
- •16 Пайка металлов и сплавов
- •16.1 Сущность и схема процесса
- •16.2. Способы пайки
- •16.3 Контроль качества сварных и паяных соединений
- •17 Технология изготовления изделий из пластмасс
- •17.1 Способы переработки пластмасс в вязкотекучем состоянии
- •17.2 Классификация резинотехнических изделий
- •17.3 Понятие о технологии изготовления изделий из резины
- •18 Основы технологии обработки конструкционных материалов резанием
- •18.1 Способы обработки металлов резанием и классификация движений в металлорежущих станках
- •18.2.Физические явления, сопровождающие процесс резания. Износ и стойкость режущего инструмента
- •18.3 Принцип классификации металлорежущих станков
- •18.4 Характеристика метода обработки сверлением и растачиванием
- •18.5 Характеристика методов обработки фрезерованием
- •18.6 Характеристика методов обработки заготовок зубчатых колёс
- •19 Обработка заготовок на шлифовальных и отделочных станках
- •19.1 Характеристика метода обработки шлифованием
- •19.2 Технология обработки шлифованием
- •19.3 Методы отделки поверхностей
- •20 Механизация и автоматизация технологических процессов механической обработки
- •20.1 Автоматизация металлорежущих станков и производства
- •20.2 Автоматические линии и комплексная автоматизация производства
- •21 Основы технологии упрочняющей обработки деталей машин
- •21.1 Качество машин
- •21.2 Технологические способы упрочняющей обработки деталей машин
- •21.3.Технологические способы упрочняющей обработки наплавкой, напылением, нанесением покрытий на рабочие поверхности деталей
- •Список литературы
10.4 Термомеханическая обработка стали
Термомеханическая обработка (ТМО) является сравнительно новым методом обработки, позволяющим повысить механические свойства металлических материалов. ТМО – это совокупность операций пластической деформации и термической обработки, совмещенных в одном технологическом процессе, который включает нагрев, пластическое деформирование и охлаждение. Термомеханическое воздействие приводит к получению структурного состояния, которое обеспечивает повышение механических свойств.
Оптимальное сочетание пластической деформации и фазовых превращений приводит к повышению плотности и более правильному расположению несовершенств кристаллической решетки металла.
Различают два основных вида ТМО: высокотемпературную термомеханическую обработку (ВТМО) и низкотемпературную термомеханическую обработку (НТМО). При ВТМО деформация производится при температуре выше температуры рекристаллизации (при этом сталь имеет аустенитную структуру). Степень деформации 20... ...30%. Во избежание рекристаллизации вслед за деформацией незамедлительно производится закалка (1150°С) с последующим низкотемпературным отпуском (100… …200 °С).
НТМО применяется только для легированных сталей, обладающих значительной устойчивостью переохлажденного аустенита. При НТМО деформация производится ниже температуры рекристаллизации (400...600°С), степень деформации 75...95%. Закалку производят сразу после деформации, а затем следует низкотемпературный отпуск (100...200°С).
Недостатками НТМО являются, во-первых, необходимость использования мощного оборудования для деформирования, во-вторых, стали после НТМО имеют невысокую сопротивляемость хрупкому разрушению.
Если при обычной термической обработке сталь имеет временное сопротивление при растяжении 2000...2200 МПа, то после ТМО оно достигает 2200...3000 МПа, при этом пластичность увеличивается в два раза (удлинение с 3...4 % повышается до 6...8 %).
10.5 Химико-термическая обработка стали
Химико-термической обработкой (ХТО) называется процесс поверхностного насыщения стали различными элементами с целью придания ей соответствующих свойств. Она отличается от других видов термической обработки тем, что при этой обработке кроме структурных изменений происходят изменения состава и строения поверхности за счет диффузии в нее элементов в атомарном состоянии из внешней среды при высоких температурах. Основная цель – упрочнение поверхности деталей, повышение твердости, износостойкости, усталостной прочности и т. п. и повышение стойкости против воздействия агрессивных сред. К процессам химико-термической обработки относятся цементация, азотирование, цианирование, алитирование, хромирование, силицирование, борирование и др.
Рассмотрим кратко некоторые виды химико-термической обработки.
Цементацией называется процесс насыщения поверхности изделия углеродом. Цель цементации – придание поверхности твердости при сохранении мягкой сердцевины. Обычно цементации подвергают детали из низкоуглеродистой стали, содержащей не более 0,25 % С (сталь марок 10, 15, 20, А12, 15Х, 25ХГМ и др.), работающие в условиях переменных ударных нагрузок и подвергающиеся износу, например зубья автомобильных зубчатых колес, шестерни, втулки, поршневые пальцы и т. д. Температура цементация 9ОО...97О°С. Толщина цементованного слоя от 0,1 до 3...4 мм.
В поверхностном слое содержание углерода составляет 0,8... 1,0%. При более высоком содержании углерода появляется охрупчивание цементованного слоя вследствие наличия свободного цементита. Концентрация углерода уменьшается по мере удаления от поверхности в глубину металла. Цементацию проводят в твердых, жидких и газообразных средах, называемых карбюризаторами. В качестве твердого карбюризатора применяют древесный уголь в смеси с другими компонентами.
Азотированием называют процесс насыщения стали азотом. Цель азотирования – придать поверхности высокую твердость, износостойкость, устойчивость против коррозии и усталостную прочность. Процесс заключается в воздействии на сталь аммиака (газовое азотирование) при температуре 5ОО...6ОО°С. Образовавшийся свободный азот, находящийся в атомарном состоянии, воздействует на сталь и образует с элементами, входящими в ее состав (Сг, Fe, A1 и др.), различные нитриды, обладающие высокой твердостью (до HRC 70). Азотированный слой сохраняет свою твердость до 400...600°С, в то время как твердость цементированного слоя с мартен-ситной структурой сохраняется лишь до 2ОО...25О°С. Толщина азотированного слоя 0,25...0,75 мм.
Азотирование железа и углеродистой стали не приводит к значительному повышению твердости. Поэтому азотированию подвергают легированные стали, например 35ХМЮА, 18ХГТ, 40ХНМА, 38Х2МЮА и др.
Достоинством процесса азотирования по сравнению с цементацией является незначительное изменение размеров и отсутствие коробления вследствие низкой температуры нагрева. Азотированные поверхности имеют большую химическую стойкость на воздухе, а также в пресной и соленой воде. Отрицательные стороны этого процесса заключаются в необходимости применения специальных сталей и значительной длительности процесса.
Цианированием называют насыщение поверхности изделий одновременно углеродом и азотом в расплавленных цианистых солях при температуре 82О...95О°С.
Недостатком этого процесса является токсичность цианистых солей. Это вызывает необходимость проводить работу в специальном помещении с соблюдением мер безопасности.
Нитроцементация представляет собой процесс насыщения поверхностного слоя одновременно углеродом и азотом в газовой среде азота 40%, водорода 4 0 % и оксида углерода 20 % при температуре 850...870 °С в течение 4... 10 ч. Назначение – повышение износостойкости, предела выносливости при изгибе, твердости коррозионной стойкости.
Борирование заключается в насыщении поверхностного слоя изделий из низко- и среднеуглеродистых сталей 20, 40, 40Х, ЗОХГС и других бором при нагревании в боросодержащей среде. Борирование применяют для повышения твердости, износостойкости, коррозионной стойкости и окалиностойкости тяжело нагруженных деталей (нефтяное оборудование, штампы, пресс-формы и др.). Процесс проводится при температуре 85О...95О°С в течение 2...6 ч. Поверхностный слой состоит из боридов, толщина слоя 0,1...0,2 мм, твердость его HV 1800...2000.