
- •Содержание
- •1 Производство чугуна
- •1.1 Исходные материалы и подготовка их к плавке
- •1.2 Основные физико-химические процессы в современных доменных печах
- •1.3 Продукты доменного производства и области их применения:
- •2 Производство стали
- •2.1 Физико-химические процессы получения стали
- •2.2 Процессы производства стали
- •3 Производство цветных металлов
- •3.1 Производство магния
- •3.2 Производство меди
- •3.3 Производство титана
- •4 Охрана труда и окружающей среды в металлургическом производстве
- •5 Строение и основные свойства металлов и сплавов
- •5.1 Атомно-кристаллическое строение металлов
- •5.2 Понятие о строении сплавов
- •5.3 Нагрузки, напряжения и деформации
- •5.4 Механические свойства
- •5.5 Теоретическая и техническая прочность
- •6 Железо и его сплавы
- •6.1 Влияние легирующих элементов на свойства стали
- •6.2 Конструкционные легированные стали, их маркировка и области применения
- •6.3 Инструментальные стали, их маркировка и области применения
- •6.4 Твердые сплавы и композиционные материалы
- •7 Цветные металлы и сплавы
- •7.1.Алюминий и его сплавы
- •7.2 Магний и его сплавы
- •7.3.Медь и ее сплавы
- •7.4 Титан и его сплавы
- •7.5 Подшипниковые сплавы и материалы
- •8 Неметаллические материалы
- •8.1 Классификация, строение и свойства неметаллических материалов
- •8.2 Типовые термопластичные материалы
- •8.3 Типовые термореактивные материалы
- •8.4 Резиновые материалы, области их применения
- •9 Основные конструктивные и технологические характеристики изделия
- •9.1 Определение детали, размера и понятие о взаимозаменяемости
- •9.2 Точность обработки и качество обработанной поверхности
- •10 Основы технологии термической обработки стали
- •10.1 Виды термической обработки
- •10.2 Виды отжига. Нормализация стали
- •10.3 Закалка и отпуск стали
- •10.4 Термомеханическая обработка стали
- •10.5 Химико-термическая обработка стали
- •11 Литейное производство
- •11.1 Классификация способов изготовления отливок
- •11.2 Эффективность использования металла
- •11.3 Сведения о литейных сплавах
- •11.4 Изготовление отливок из серого, высокопрочного и ковкого чугунов
- •11.5 Особенности изготовления стальных отливок
- •11.6 Особенности изготовления отливов из цветных металлов
- •11.7 Контроль качества отливок. Способы исправления литейных дефектов
- •12 Основы технологии обработки металлов давлением
- •12.1. Классификация способов обработки металлов давлением
- •12.2 Пластичность металлов и сопротивление деформированию
- •13 Прокатка, прессование и волочение
- •13.1 Сущность процесса прокатки
- •13.2 Технологический процесс прокатки
- •14 Ковка и штамповка
- •14.1 Сущность процесса ковки
- •14.2 Сущность процесса горячей объемной штамповки
- •14.3 Классификация способов холодной штамповки
- •15 Основы технологии сварочного производства
- •15.1 Физическая сущность и классификация способов сварки
- •15.2 Свариваемость однородных и разнородных материалов
- •15.3 Сварка углеродистых и легированных сталей и чугунов
- •15.4 Сварка меди, алюминия, титана и их сплавов
- •16 Пайка металлов и сплавов
- •16.1 Сущность и схема процесса
- •16.2. Способы пайки
- •16.3 Контроль качества сварных и паяных соединений
- •17 Технология изготовления изделий из пластмасс
- •17.1 Способы переработки пластмасс в вязкотекучем состоянии
- •17.2 Классификация резинотехнических изделий
- •17.3 Понятие о технологии изготовления изделий из резины
- •18 Основы технологии обработки конструкционных материалов резанием
- •18.1 Способы обработки металлов резанием и классификация движений в металлорежущих станках
- •18.2.Физические явления, сопровождающие процесс резания. Износ и стойкость режущего инструмента
- •18.3 Принцип классификации металлорежущих станков
- •18.4 Характеристика метода обработки сверлением и растачиванием
- •18.5 Характеристика методов обработки фрезерованием
- •18.6 Характеристика методов обработки заготовок зубчатых колёс
- •19 Обработка заготовок на шлифовальных и отделочных станках
- •19.1 Характеристика метода обработки шлифованием
- •19.2 Технология обработки шлифованием
- •19.3 Методы отделки поверхностей
- •20 Механизация и автоматизация технологических процессов механической обработки
- •20.1 Автоматизация металлорежущих станков и производства
- •20.2 Автоматические линии и комплексная автоматизация производства
- •21 Основы технологии упрочняющей обработки деталей машин
- •21.1 Качество машин
- •21.2 Технологические способы упрочняющей обработки деталей машин
- •21.3.Технологические способы упрочняющей обработки наплавкой, напылением, нанесением покрытий на рабочие поверхности деталей
- •Список литературы
5.5 Теоретическая и техническая прочность
Прочность – это свойство твердых тел сопротивляться разрушению, а также необратимому изменению формы под воздействием внешних сил. Поэтому увеличению прочности придают первостепенное значение, стремясь одновременно обеспечить и достаточную пластичность.
Теоретическая прочность металлов выражается формулой:
,
(3)
где: G – модуль сдвига, представляющий собой коэффициент пропорциональности между касательным напряжением г и относительным сдвигом . Числовые значения модуля сдвига следующие: для железа – 77000 МПа, для меди – 44 000 МПа, для алюминия 27000 МПа.
Техническая
прочность металлов, определяемая
значениями механических
свойств
,
,
значительно
меньше теоретической.
Фактическая прочность уменьшается главным образом вследствие наличия в металле несовершенств.
Повысить прочность металла – значит продлить жизнь машин, оборудования, уменьшить их массу, улучшить надежность, повысить долговечность, экономичность и снизить металлоемкость.
На рисунке 5.10. приведены методы, используемые в практике для повышения прочности металлов и сплавов.
Все современные методы упрочнения металлов направлены на создание условий торможения дислокации за счет увеличении их плотности, взаимодействии дислокаций с атомами легирующих элементов, измельчения блоков, образования дисперсных частиц карбидов, нитридов и т.п. К наиболее прогрессивным методам упрочнения относят легирование, термическую и термомеханихескую обработки, деформационное упрочнение и др.
Прочность металлов может быть повышена за счет создания бездефектных структур. Например, почти бездислокационные нитевидные кристаллы (усы) железа имеют прочность = 13000 МПа а техническое железо только 300 МПа. Вторым фактором повышения прочности металлов является увеличение количества (повышение плотности) различных дефектов, в том числе и дислокаций. Прочность металлов с ростом числа дислокаций сначала уменьшается, а затем возрастает. Под плотностью дислокаций понимают суммарную длину дислокации (см) на единицу объема (см 3). Плотность дислокаций выражается в см -2. Оптимальной считается плотность дислокаций, равная 10 ...108 см-2 , присущая отожженным металлам. Критической считается плотность 1012...1013 см, превышение которой приводит к образованию трещин в металле.
Рассмотрим два случая влияния легирования на прочность металлов. Первый – когда в результате взаимодействия легирующего элемента с основным металлом образуется твердый раствор на базе решетки основного металла. Второй – когда легирование приводит к образованию новой, более прочной фазы. Предпочтительнее, когда эта фаза выделяется в виде сетки по границам зерен или в виде скелетообразного каркаса. Примером такого рода упрочнения может служить изменение прочности железа под влиянием углерода. По мере увеличения содержания углерода в железе прочностные свойства возрастают за счет изменения фазового состава.
Возможность применения упрочняющей термической обработки определяется в основном типом диаграмм состояния и зависит от растворимости легирующих элементов в металле-основе, а также аллотропических превращений в металлах. Существует много способов упрочнения за счет термической обработки, которые отличаются друг от друга температурой нагрева и условиями охлаждения. В качестве примера можно привести результаты термической обработки углеродистой стали с твердостью НВ 150...200. После термической обработки (закалки) ее твердость увеличивается в 2,5...3 раза. Химико-термическая обработка является одним из методов поверхностного упрочнения стали. При этом изменяется химический состав, строение и свойства поверхностного слоя металла. В результате такой обработки повышаются твердость, предел выносливости, износостойкость, контактная прочность, сопротивление кавитационной эрозии, коррозионная стойкость и др. Например, известно, что многие детали машин и механизмов (зубчатые колеса, валы, поршневые пальцы, червяки, ролики подшипников и др.) работают в условиях износа и ударных нагрузок. Для таких деталей требуются твердая износостойкая поверхность и сравнительно мягкая сердцевина.
Упрочнение пластической деформацией (обкатка роликами, обдувка дробью и др.) используют главным образом в тех случаях, когда сплавы по каким-либо причинам не могут быть упрочнены термической обработкой.
Высокую прочность при достаточной пластичности можно получить при термомеханической обработке, которая заключается в том, что в едином технологическом процессе сочетаются деформация и закалка. В ряде случаев при этом наряду с повышением временного сопротивления при растяжении значительно увеличивается предел текучести (в 1,5...2 раза).
Для упрочнения сплавов в последнее время используют такие методы, как ультразвуковая обработка, магнитная обработка, облучение частицами высокой энергии, лазерная обработка, высокие давления и т.д.
Одним из путей повышения прочности является получение композиционных и многослойных материалов, а также получение материалов методами порошковой металлургии.
По прогнозам материаловедов в ближайшие годы будут созданы специальные сплавы и стали с пределами прочности 3500...6000 МПа, а легкие сплавы – 1000 – 1500 МПа, что значительно приблизит их техническую прочность к теоретической.