Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
методичка для печати.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
2.01 Mб
Скачать

Семинар 2 Кинематика вращательного движения

Основные формулы

Тангенциальное ускорение точки , где - линейная скорость точки

Нормальное (центростремительное) ускорение- , где - радиус кривизны траектории

Полное ускорение .

Средняя угловая скорость , где -изменение угла поворота за интервал времени

Мгновенная угловая скорость , где -угол поворота радиус-вектора.

Угловое ускорение

Кинематическое уравнение равномерного вращения , где - начальное угловое перемещение, - время

При равномерном вращении

Для равномерного вращательного движения , где -период обращения, - частота обращения, то есть число оборотов в единицу времени

Угловая скорость связана с линейной скоростью движения соотношением

Кинематическое уравнение равнопеременного вращательного движения ( ) , где - начальная угловая скорость

Угловая скорость тела при равнопеременном вращении

Тангенциальное и нормальное ускорения при вращательном движении могут быть выражены следующим образом

Вопросы и упражнения

  1. Покажите на рисунке направление мгновенной скорости, нормального и тангенциального ускорения.

  2. Дайте определение периода обращения.

  3. Как связан период обращения с линейной частотой?

  4. Дайте определение угловой скорости и запишите формулу, выражающую смысл этого понятия.

  5. Дайте определение углового ускорения.

  6. Как связаны линейная и угловая скорость?

  7. Запишите связь углового и линейного ускорения.

  8. Что называется тангенциальным и нормальным ускорениями? Чему они равны?

  9. Запишите связь между угловым ускорением и угловой скоростью при равномерном движении по окружности.

ЗАДАЧИ

  1. Нормальное ускорение точки, движущейся по окружности радиусом задается уравнением ( где ). Определите: 1) тангенциальное ускорение точки; 2) путь, пройденный точкой за 5 с после начала движения; 3) полное ускорение для момента времени .

  2. Материальная точка начинает двигаться по окружности радиусом с постоянным тангенциальным ускорением . Определите: 1) момент времени, при котором вектор ускорения образует с вектором скорости угол ; 2) путь, пройденный за это время движущейся точкой.

  3. Колесо вращается с постоянным угловым ускорением . Определите радиус колеса, если через после начала движения полное ускорение колеса равно .

  4. Якорь электродвигателя, имеющий частоту вращения , после выключения тока, сделав оборотов, остановился. Определите угловое ускорение якоря.

  5. Колесо автомашины вращается равнозамедленно. За 2 минуты оно изменило частоту вращения от до . Определите : 1) угловое ускорение колеса; 2) число полных оборотов, сделанных колесом за это время.

  6. Точка движется по окружности радиусом с постоянным тангенциальным ускорением. К концу четвертого оборота после начала движения линейная скорость точки . Определите нормальное ускорение точки через после начала движения.

  7. Диск вращается вокруг неподвижной оси так, что зависимость угла поворота диска от времени задается уравнением . Определите к концу второй секунды после начала движения: 1) угловую скорость диска; 2) угловое ускорение диска; 3) тангенциальное, нормальное и полное ускорение диска для точки, находящейся на расстоянии 80 см от оси вращения.

  8. Диск радиусом 10 см вращается так, что зависимость линейной скорости точек, лежащих на ободе диска, задается уравнением . Определите угол, который образует вектор полного ускорения с радиусом колеса через2 с после начала движения.

  9. Найти радиус вращающегося колеса, если известно, что линейная скорость v1 точки, лежащей на ободе, в 2,5 раза больше линейной скорости v2 точки, лежащей на 5 см ближе к оси колеса.

  10. Колесо, вращаясь равноускоренно, достигло угловой скорости рад/сек через N=10 об после начала вращения. Найти угловое ускорение колеса.

  11. Колесо, вращаясь равнозамедленно, при торможении уменьшило свою скорость за 1 мин с 300 об/мин до 180 об/мин. Найти угловое ускорение колеса и число оборотов, сделанных им за это время.

  12. Точка движется по окружности радиусом R=10 см с постоянным тангенциальным ускорением . Найти тангенциальное ускорение точки, если известно, что к концу пятого оборота после начала движения скорость точки стала см/сек.

  13. Колесо радиусом R=10 см вращается с постоянным угловым ускорением . Найти для точек на ободе колеса к концу первой секунды после начала движения: 1) угловую скорость, 2) линейную скорость, 3) тангенциальное ускорение, 4) нормальное ускорение, 5) полное ускорение и 6) угол, составляемый направлением полного ускорения с радиусом колеса.

  14. Точка движется по окружности так, что зависимость пути от времени дается уравнением ,где A=5 м, B=-2 м/сек и C=1 м/сек2. Найти линейную скорость точки, ее тангенциальное, нормальное и полное ускорение через t=3 сек после начала движения, если известно, что нормальное ускорение точки при t=2 сек равно .

  15. Колесо радиусом R=10 см вращается так, что зависимость линейной скорости точек, лежащих на ободе колеса, от времени движения дается уравнением ,где A=3 см/сек2 и B=1 см/сек2. Найти угол, составляемый вектором полного ускорения с радиусом колеса в моменты времени t=0,1,2,3,4 и 5 сек после начала движения.

  16. Небольшое тело начинает движение по окружности радиусом 30 см с постоянным по модулю тангенциальным ускорением . Найти полное ускорение через 3 с после начала движения.

  17. Материальная точка движется по окружности радиусом 5 м. Когда нормальное ускорение точки становится равным , угол между векторами полного и нормального ускорений равен . Найти модули скорости и тангенциального ускорения точки для этого момента времени.

  18. Нормальное ускорение точки, движущейся по окружности радиусом 3,2 м, изменяется по закону . Найти: а) путь, пройденный частицей за 5 с после начала движения; б) тангенциальное и полное ускорение в конце этого участка пути.

  19. По окружности радиусом 5 м равномерно движется материальная точка со скоростью . Построить графики зависимости длины пути и модуля перемещения от времени. Считать, что в начальный момент времени перемещение равно нулю.

  20. Диск радиусом 20 см вращается согласно уравнения точек на окружности диска . Определить тангенциальное, нормальное и полное ускорение для момента времени .