
- •1. Математическая и логическая основа вт
- •Проблема представления информации.
- •Системы счисления, используемые в цифровой технике.
- •1.3. Формы представления двоичных чисел.
- •1.4. Арифметические операции над числами с фиксированной точкой.
- •1.6.Логическая основа вт. Элементарные фал и их техническая реализация.
- •2. Комбинационные цифровые устройства (кцу).
- •2.1. Последовательность синтеза кцу.
- •2.2. Табличный и скобочный способы задания кцу.
- •2.5. Основные законы и тождества алгебры логики.
- •Минимизация фал.
- •2.7. Базисы и минимальные базисы.
- •1 Вариант - обычный каскад.
- •2 Вариант - каскад с открытым коллектором.
- •3 Вариант - каскад с открытым эмиттером.
- •4 Вариант - каскад с тремя состояниями.
- •3. Последовательностные цифровые устройства (пцу).
- •3.1. Понятие пцу.
- •1 Этап. Определение минимального числа состояний, позволяющих построить устойчивый автомат, соответствующий поставленным условиям работы.
- •Переход к динамическому способу управления;
- •Увеличение числа состояний автомата, т.Е. Числа триггеров зу.
- •2 Этап. Определение количества и типа триггеров зу.
- •3 Этап. Определение функций переходов и синтез кцу1.
- •Лекция 11 d rg 1 Циклический сдвиг организуется путём соединения выхо-
- •Двоичные счётчики.
- •C t tt t tt t tt c ct2 1 q1 графическое
- •Счётчики с произвольным модулем счёта.
- •Полупроводниковые запоминающие устройства.
- •4.1. Классификация и основные характеристики зу.
- •4.2. Организация накопителя зу.
- •4.3. Статические озу.
- •4.4. Динамические озу.
- •4.6. Построение памяти заданной структуры.
- •4.7. Стековая память.
- •Преобразователи сигналов.
- •6.1. Принципы построения цап.
- •Согласующее
- •6.2. Основные параметры цап.
- •6.3. Аналого-цифровые преобразователи.
- •6.4. Основные параметры ацп.
- •7. Принципы управления микропроцессора.
- •7.1. Классификация микропроцессоров.
- •7.2. Декомпозиция мп.
- •7 .3. Принцип аппаратного управления ("жёсткой" логики).
- •7.4. Принцип микропрограммного управления (гибкой логики).
- •7.5. Способы формирования сигналов управления
- •Код номера
- •7.6. Операционное устройство мп.
- •7.7. Обобщённая структурная схема мп.
- •8. Элементы архитектуры мп.
- •8.1. Структура команд.
- •Необходимость иметь большее число разрядов для представления адресов и кода операции приводит к недопустимо большой длине трёхадресной команды;
- •Часто в качестве операндов используются результаты предыдущих операций, хранимых в регистрах мп. В этом случае трёхадресный формат используется неэффективно.
- •8.2. Способы адресации, основанные на прямом использовании кода команды.
- •Номера реги- стров
- •Число 4527
- •Адрес 1765
- •8.3. Способы адресации, основанные на преобразовании кода команды.
- •8.4. Понятие вектора состояния мп.
- •8.5. Понятие системы прерывания программ.
- •8.6. Характеристики системы прерывания.
- •8.7. Способы организации приоритетного обслуживания запросов прерывания.
- •Счётчик
- •Счётчик
- •Компаратор
- •Код маски
- •8.8. Процесс выполнения команд. Рабочий цикл мп.
- •8.9. Конвейерная обработка команд и данных.
- •8.10. Особенности risc-архитектуры.
- •Усложнение процессора делает более трудным или даже невыполнимым реализацию его на одном кристалле, что могло бы облегчить достижение высокой производительности.
- •Регистры глобальных переменных
- •Регистр адреса
- •Цепи данных
- •Интерфейс пу
- •Канал ввода-вывода
- •Канал ввода-вывода
- •1. Организация цепочки данных.
- •9.4. Интерфейсы периферийных устройств.
- •Данные от процессора
- •Данные в процессор
- •Регистр передатчика очищен
- •Регистр приёмника заполнен
2.5. Основные законы и тождества алгебры логики.
Законы и тождества алгебры логики используются для преобразования ФАЛ. Относительно дизъюнкции, конъюнкции, инверсии и исключающее ИЛИ справедливы следующие тождества:
1) х х = х, 4) х х = 1, 7) х 1 = 1, 10) х 0 = х,
2) х х = х, 5) х х = 0, 8) х 1 = х, 11) х 0 = 0,
3) х х = 0, 6)х х = 1, 9) х 1 = х, 12) х 0 = х.
Тождества также отражают правила эквивалентной замены одного логического элемента другим.
Так, первое, второе, восьмое, десятое и двенадцатое тождества показывают возможность реализации повторителя на логическом элементе ИЛИ, И либо сумматор по модулю два. Девятое тождество показывает возможность реализации инвертора на логическом элементе сумматор по модулю два и т.д.
Относительно тех же логических операций справедливы следующие законы:
Закон двойной инверсии х = х. Здесь х может быть как простой пе- ременной, так и логическим выражением.
2. Сочетательный закон х0 (х1 х2) = (х0 х1) х2,
х0 (х1 х2) = (х0 х1) х2,
х0 (х1 х2) = (х0 х1) х2.
ЛЕКЦИЯ 4
Переместительный закон х0 х1 = х1 х0, х0 х1 = х1 х0, х0 х1 = х1 х0.
Распределительный закон х0 (х1 х2) = (х0 х1) (х0 х2), х0 (х1 х2) = (х0 х1) (х0 х2), х0 (х1 х2) = (х0 х1) (х0 х2). Докажем второе равенство. Раскрывая скобки его правой части, получаем х0х0 х0х2 х1х0 х1х2 = х0 х0х2 х1х0 х1х2 = х0(1 х2 х1) х1х2 = х0 х1х2, что и следовало доказать. Остальные равенства очевидны.
Закон двойственности (правила де Моргана). Этот закон устанавливает связь между дизъюнкцией и конъюнкцией с помощью инверсии: х0 х1 = х0х1 = х0 | х1, х0х1 = х0 х1 = х0 х1.
Эти законы справедливы для любого числа аргументов. Следует отметить, что последние 4 закона используются особенно часто для преобразования ФАЛ. К примеру, докажем равенство: х0 х1 = х0х1 х0х1.
Представим сумму по модулю два в виде дизъюнкции, конъюнкции и инверсии:х0х1 х0х1 = (х0х1) (х0х1). Применив к полученному выражению второе правило де Моргана, получаем (х0х1)(х0х1) = (х0 | x1)(x0 | x1). Теперь к каждому сомножителю применим первое правило де Моргана (х0 х1)(х0 х1) и воспользуемся распределительным законом: х0х0 х0х1 х1х0 х1х1. Согласно пятому тождеству первое и последнее слагаемые обращаются в ноль, т.е. последнее выражение запишется как 0 х0х1 х1х0 0 или, согласно десятому тождеству, х0х1 х1х0. Применив переместительный закон, окончательно получаем х0х1 х0х1, что и требовалось доказать.
Закон поглощения х хz = x, x(x z) = x.
Закон склеивания хz xz = x, (x z)(x z) = x.
Справедливость этих двух законов докажите самостоятельно.