
- •1. Математическая и логическая основа вт
- •Проблема представления информации.
- •Системы счисления, используемые в цифровой технике.
- •1.3. Формы представления двоичных чисел.
- •1.4. Арифметические операции над числами с фиксированной точкой.
- •1.6.Логическая основа вт. Элементарные фал и их техническая реализация.
- •2. Комбинационные цифровые устройства (кцу).
- •2.1. Последовательность синтеза кцу.
- •2.2. Табличный и скобочный способы задания кцу.
- •2.5. Основные законы и тождества алгебры логики.
- •Минимизация фал.
- •2.7. Базисы и минимальные базисы.
- •1 Вариант - обычный каскад.
- •2 Вариант - каскад с открытым коллектором.
- •3 Вариант - каскад с открытым эмиттером.
- •4 Вариант - каскад с тремя состояниями.
- •3. Последовательностные цифровые устройства (пцу).
- •3.1. Понятие пцу.
- •1 Этап. Определение минимального числа состояний, позволяющих построить устойчивый автомат, соответствующий поставленным условиям работы.
- •Переход к динамическому способу управления;
- •Увеличение числа состояний автомата, т.Е. Числа триггеров зу.
- •2 Этап. Определение количества и типа триггеров зу.
- •3 Этап. Определение функций переходов и синтез кцу1.
- •Лекция 11 d rg 1 Циклический сдвиг организуется путём соединения выхо-
- •Двоичные счётчики.
- •C t tt t tt t tt c ct2 1 q1 графическое
- •Счётчики с произвольным модулем счёта.
- •Полупроводниковые запоминающие устройства.
- •4.1. Классификация и основные характеристики зу.
- •4.2. Организация накопителя зу.
- •4.3. Статические озу.
- •4.4. Динамические озу.
- •4.6. Построение памяти заданной структуры.
- •4.7. Стековая память.
- •Преобразователи сигналов.
- •6.1. Принципы построения цап.
- •Согласующее
- •6.2. Основные параметры цап.
- •6.3. Аналого-цифровые преобразователи.
- •6.4. Основные параметры ацп.
- •7. Принципы управления микропроцессора.
- •7.1. Классификация микропроцессоров.
- •7.2. Декомпозиция мп.
- •7 .3. Принцип аппаратного управления ("жёсткой" логики).
- •7.4. Принцип микропрограммного управления (гибкой логики).
- •7.5. Способы формирования сигналов управления
- •Код номера
- •7.6. Операционное устройство мп.
- •7.7. Обобщённая структурная схема мп.
- •8. Элементы архитектуры мп.
- •8.1. Структура команд.
- •Необходимость иметь большее число разрядов для представления адресов и кода операции приводит к недопустимо большой длине трёхадресной команды;
- •Часто в качестве операндов используются результаты предыдущих операций, хранимых в регистрах мп. В этом случае трёхадресный формат используется неэффективно.
- •8.2. Способы адресации, основанные на прямом использовании кода команды.
- •Номера реги- стров
- •Число 4527
- •Адрес 1765
- •8.3. Способы адресации, основанные на преобразовании кода команды.
- •8.4. Понятие вектора состояния мп.
- •8.5. Понятие системы прерывания программ.
- •8.6. Характеристики системы прерывания.
- •8.7. Способы организации приоритетного обслуживания запросов прерывания.
- •Счётчик
- •Счётчик
- •Компаратор
- •Код маски
- •8.8. Процесс выполнения команд. Рабочий цикл мп.
- •8.9. Конвейерная обработка команд и данных.
- •8.10. Особенности risc-архитектуры.
- •Усложнение процессора делает более трудным или даже невыполнимым реализацию его на одном кристалле, что могло бы облегчить достижение высокой производительности.
- •Регистры глобальных переменных
- •Регистр адреса
- •Цепи данных
- •Интерфейс пу
- •Канал ввода-вывода
- •Канал ввода-вывода
- •1. Организация цепочки данных.
- •9.4. Интерфейсы периферийных устройств.
- •Данные от процессора
- •Данные в процессор
- •Регистр передатчика очищен
- •Регистр приёмника заполнен
Необходимость иметь большее число разрядов для представления адресов и кода операции приводит к недопустимо большой длине трёхадресной команды;
Часто в качестве операндов используются результаты предыдущих операций, хранимых в регистрах мп. В этом случае трёхадресный формат используется неэффективно.
При ограниченной разрядности команд практически невозможно кодировать большое число различных операций и одновременно иметь гибкую форму адресации операндов.
Это противоречие преодолевается расширением кодов операций в команде.
Так, для задания небольшой группы основных операций (арифметических и т.п.) используется короткий код операции, а получаемая при этом сравнительно большая адресная часть команды позволяет реализовать гибкую адресацию (например, двухадресную с многими модификациями).
Для задания других операций используются более длинные (расширяемые) коды операций, при этом сокращаемая адресная часть оставляет возможность лишь для более простой адресации операндов (например, одноадресной).
В пределе расширяемый код операций занимает весь формат команды (безадресная команда).
Приведённые структуры команд достаточно схематичны. В действительности адресные поля команд большей частью содержат не сами адреса, а только информацию, позволяющую определить действительные (исполнительные) адреса операндов в соответствии с используемыми в командах способами адресации.
8.2. Способы адресации, основанные на прямом использовании кода команды.
Следует различать понятия адресный код и исполнительный адрес.
Адресный код АК – это информация об адресе операнда, содержащаяся в команде.
Исполнительный адрес АИ – это номер ячейки памяти, к которой производится фактическое обращение.
Адресный код, как правило, не совпадает с исполнительным адресом.
Способы, в которых исполнительный адрес определяется значением адресного кода команды, включают непосредственную, прямую, укороченную, регистровую, косвенную, автоинкрементную и автодекрементную адресации.
При непосредственной адресации в команде содержится не адрес операнда, а непосредственно сам операнд.
В этом случае не требуется ячейки памяти для хранения операнда, а значит не требуется и обращения к памяти для его выборки. В результате уменьшается время выполнения программы и занимаемого ею объёма памяти.
Непосредственная адресация удобна при работе с различного рода константами.
При прямой адресации исполнительный адрес совпадает с кодом адреса команды.
Укороченная адресация используется для уменьшения длины кода команды.
Суть способа сводится к тому, что в команде задаются только младшие разряды адресов, а старшие подразумеваются нулевыми.
Такая адресация позволяет использовать только небольшую группу фиксированных ячеек с короткими адресами и поэтому может применяться лишь совместно с другими способами адресации.
Косвенная адресация используется для преодоления ограничений короткого формата команды.
Адресный код команды указывает адрес ячейки памяти, в которой находится адрес операнда или команды.
Таким образом, косвенная адресация может быть иначе определена как "адресация адреса".
Данный вид адресации указывается либо кодом операции команды, либо её специальным разрядом – указателем адресации (УА).
В УА цифра 0 означает, что адресная часть команды является прямым адресом, а цифра 1 – косвенным адресом.
Иногда используется многоступенчатая косвенная адресация. В этом случае УА содержится и в ячейках памяти.
Адреса последовательно выбираются из памяти до тех пор, пока не будет найдена ячейка, в которой УА определит прямую адресацию. Адрес из этой последней ячейки и является искомым исполнительным адресом.
В МП широко применяется совместное использование регистровой и косвенной адресаций.
Пусть, например, необходимо передать число 4527 из Рг5 РОНа МП в оперативную память по адресу 1765.