
- •1. Математическая и логическая основа вт
- •Проблема представления информации.
- •Системы счисления, используемые в цифровой технике.
- •1.3. Формы представления двоичных чисел.
- •1.4. Арифметические операции над числами с фиксированной точкой.
- •1.6.Логическая основа вт. Элементарные фал и их техническая реализация.
- •2. Комбинационные цифровые устройства (кцу).
- •2.1. Последовательность синтеза кцу.
- •2.2. Табличный и скобочный способы задания кцу.
- •2.5. Основные законы и тождества алгебры логики.
- •Минимизация фал.
- •2.7. Базисы и минимальные базисы.
- •1 Вариант - обычный каскад.
- •2 Вариант - каскад с открытым коллектором.
- •3 Вариант - каскад с открытым эмиттером.
- •4 Вариант - каскад с тремя состояниями.
- •3. Последовательностные цифровые устройства (пцу).
- •3.1. Понятие пцу.
- •1 Этап. Определение минимального числа состояний, позволяющих построить устойчивый автомат, соответствующий поставленным условиям работы.
- •Переход к динамическому способу управления;
- •Увеличение числа состояний автомата, т.Е. Числа триггеров зу.
- •2 Этап. Определение количества и типа триггеров зу.
- •3 Этап. Определение функций переходов и синтез кцу1.
- •Лекция 11 d rg 1 Циклический сдвиг организуется путём соединения выхо-
- •Двоичные счётчики.
- •C t tt t tt t tt c ct2 1 q1 графическое
- •Счётчики с произвольным модулем счёта.
- •Полупроводниковые запоминающие устройства.
- •4.1. Классификация и основные характеристики зу.
- •4.2. Организация накопителя зу.
- •4.3. Статические озу.
- •4.4. Динамические озу.
- •4.6. Построение памяти заданной структуры.
- •4.7. Стековая память.
- •Преобразователи сигналов.
- •6.1. Принципы построения цап.
- •Согласующее
- •6.2. Основные параметры цап.
- •6.3. Аналого-цифровые преобразователи.
- •6.4. Основные параметры ацп.
- •7. Принципы управления микропроцессора.
- •7.1. Классификация микропроцессоров.
- •7.2. Декомпозиция мп.
- •7 .3. Принцип аппаратного управления ("жёсткой" логики).
- •7.4. Принцип микропрограммного управления (гибкой логики).
- •7.5. Способы формирования сигналов управления
- •Код номера
- •7.6. Операционное устройство мп.
- •7.7. Обобщённая структурная схема мп.
- •8. Элементы архитектуры мп.
- •8.1. Структура команд.
- •Необходимость иметь большее число разрядов для представления адресов и кода операции приводит к недопустимо большой длине трёхадресной команды;
- •Часто в качестве операндов используются результаты предыдущих операций, хранимых в регистрах мп. В этом случае трёхадресный формат используется неэффективно.
- •8.2. Способы адресации, основанные на прямом использовании кода команды.
- •Номера реги- стров
- •Число 4527
- •Адрес 1765
- •8.3. Способы адресации, основанные на преобразовании кода команды.
- •8.4. Понятие вектора состояния мп.
- •8.5. Понятие системы прерывания программ.
- •8.6. Характеристики системы прерывания.
- •8.7. Способы организации приоритетного обслуживания запросов прерывания.
- •Счётчик
- •Счётчик
- •Компаратор
- •Код маски
- •8.8. Процесс выполнения команд. Рабочий цикл мп.
- •8.9. Конвейерная обработка команд и данных.
- •8.10. Особенности risc-архитектуры.
- •Усложнение процессора делает более трудным или даже невыполнимым реализацию его на одном кристалле, что могло бы облегчить достижение высокой производительности.
- •Регистры глобальных переменных
- •Регистр адреса
- •Цепи данных
- •Интерфейс пу
- •Канал ввода-вывода
- •Канал ввода-вывода
- •1. Организация цепочки данных.
- •9.4. Интерфейсы периферийных устройств.
- •Данные от процессора
- •Данные в процессор
- •Регистр передатчика очищен
- •Регистр приёмника заполнен
Полупроводниковые запоминающие устройства.
4.1. Классификация и основные характеристики зу.
ЗУ
Оперативные (ОЗУ)
Постоянные (ПЗУ)
Статические Динамические Масочные Однократно Репрограммируемые
(RAM) (RAMD) (ROM) (PROM) (EPROM, EEPROM)
ЗУ разделяются на оперативные (ОЗУ) и постоянные (ПЗУ).
ОЗУ предназначены для сравнительно кратковременного хранения информации. При отключении напряжения питания информация в них разрушается.
По способу хранения информации в запоминающем элементе различают:
Статические ОЗУ (сокращённо обозначаются RAM), где в качестве запоминающих элементов используются асинхронные RS-триггеры.
Динамические ОЗУ (сокращённо обозначаются RAMD), в которых хранение информации осуществляется за счёт заряда конденсаторов, сформи-рованных в структуре полупроводника.
ПЗУ предназначены для длительного хранения информации, которая сохраняется и при отсутствии напряжения питания.
ПЗУ разделяются на три группы:
Масочные ПЗУ (сокращённо обозначаются ROM), в которые информация записывается однократно в процессе изготовления.
Однократно программируемые (сокращённо обозначаются PROM), в которые информация записывается также однократно, но пользователем.
Перепрограммируемые или репрограммируемые, допускающие возможность стирания и повторной записи информации.
ПЗУ, в которых стирание информации обеспечивается электрическим путём, сокращённо обозначаются EEPROM, а ультрафиолетовым облучением – EPROM.
Все типы ЗУ изготавливаются в виде интегральных микросхем. При этом в маркировке микросхем ОЗУ используются буквы РУ. В маркировке микросхем ПЗУ типа ROM используются буквы РЕ, типа PROM – буквы РТ, типа EPROM – буквы РФ, а типа EEPROM – буквы РР.
Выходные цепи ОЗУ организуются с тремя состояниями, а ПЗУ – как с тремя состояниями, так и с открытым коллектором.
Важнейшими характеристиками ЗУ являются:
Общая ёмкость С, которая определяется числом хранимых слов N и их разрядностью m: С = Nm.
Для хранения одноразрядного слова в ЗУ отводится запоминающий элемент. М-разрядные слова хранятся в ячейках памяти, каждая из кото-рых состоит из m запоминающих элементов.
Ёмкость ЗУ измеряется в битах, байтах (1байт = 8 бит), килобитах (1Кбит = 1024 бит), килобайтах (1Кбайт = 8 Кбит = 8192 бит).
Быстродействие характеризуется временем обращения, которое определяется с момента начала записи или считывания информации до момента их завершения, включая и подготовку ЗУ к следующему обращению.
Среди других временных параметров часто приводят длительность импульсов и пауз на различных входах ЗУ, величины временных сдвигов между сигналами и т.д.
Эти параметры необходимы для обеспечения устойчивой работы мик-росхемы ЗУ.
Напряжение питания, напряжения и токи сигналов в различных режимах работы ЗУ, потребляемая мощность.
Соответствие между сигналами управления и режимами работы ЗУ.