Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
біохім.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
139.32 Кб
Скачать

Азотовий обмін у печінці

 

Печінка займає ключову роль в обміні білків і амінокислот.

У клітинах печінки, на відміну від інших органів, є повний набір ферментів, що беруть участь в амінокислотному обміні. Амінокислоти, що всмоктуються у кишечнику, потрапляють з кров'ю ворітної вени у печінку і використовуються тут в різних шляхах обміну:

1) синтез білків;

2) розпад до кінцевих продуктів;

З) перетворення у вуглеводи та ліпіди;

4) взаємоперетворення амінокислот;

5) перетворення у низькомолекулярні азотовмісні речовини;

6) звільнення в кров і доставка до інших органів і тканин для синтезу там білків і низькомолекулярних азотових речовин.

Печінка бере участь і в метаболізмі амінокислот, що надходять за певних умов із периферичних тканин. Інтенсивно цей процес перебігає під час голодування організму. Крім того, клітини печінки (а також ряду інших органів) захоплюють білки гемолізованих еритроцитів, денатуровані білки плазми, білкові й пептидні гормони і за допомогою внутрішньоклітинних протеолітичних ферментів гідролізують їх до вільних амінокислот.

Для печінки характерна висока швидкість синтезу і розпаду білків, як тих, що функціонують у самій печінці, так і тих, що секретуються в кров. Оскільки в організмі немає резерву білків і амінокислот, по­дібного до резерву вуглеводів чи жирів, то у періоди недостатнього харчування деякі менш функціонально важливі білки печінки, як і ряду інших органів, розпадаються, а із амінокислот синтезуються більш необхідні в цих умовах ферменти, білки-рецептори тощо.

У печінці утворюється більшість білків плазми крові – 100 % альбуміну, близько 90 % альфа1-глобулінів, 75 % альфа2-глобулінів, 50 % бета-глобулінів, фактори згортання крові, білки-компоненти ліпопротеїнів плазми крові, фермент холінестераза. Швидкість їх оновлення досить висока, зокрема, щодня у печінці синтезується 12-16 г альбуміну. При ураженні паренхіми печінки настає зменшення вмісту в плазмі крові альбуміну, альфа-глобулінів, глікопротеїнів, фібриногену. Діагностично важливим є зниження вмісту насамперед трансферину, альбуміну, протромбіну, холінестерази. Період напіврозпаду альбуміну – 20-26 днів, тому при гострих гепатитах, якщо хвороба не триває декілька тижнів, рівень альбуміну плазми залишається у межах норми. За цих умов найціннішим прогностичним показником є визначення протромбінового часу (проби на згортання крові), оскільки період напіврозпаду факторів згортання крові – тільки 5-72 год. Швидко оновлюються і внутрішньопечінкові ферменти, їх утворення індукується харчовими факторами, рядом гормонів, що, в свою чергу, впливає на обмін речовин всього організму.

Ті амінокислоти, які не використані для синтезу білків у печінці чи інших органах, піддаються катаболізму чи перетворенню в інші речовини. Амінокислоти втрачають аміно­групу в результаті прямого чи непрямого дезамінування, а утворені кетокислоти різними шляхами надходять у цикл лимонної кислоти. Після споживання білкової їжі окиснювальний розпад амінокислот служить основним джерелом енергії у печінці. Вуглецеві скелети амінокислот можуть перетворюватись у вуглеводи, жирні кислоти, кетонові тіла.

Деякі амінокислоти є глікогенними, інші – і глікогенними, і кетогенними, а виключно кетогенною є лейцин. При голодуванні чи недостатньому надходженні вуглеводів з їжею за рахунок глюконеогенезу із амінокислот підтримується нормальна концентрація глюкози в крові і, таким чином, забезпечуються глюкозою мозок, еритроцити, мозкова речовина нирок.Джерелом амінокислот для глюконеогенезу в цих умовах служить розпад білків скелетних м'язів. Дезамінування амінокислот відбувається в основному в печінці. Виключенням є амінокислоти з розгалуженим ланцюгом (валін, лейцин, ізолейцин), які піддаються переамінуванню з альфа-кетоглутаратом у м'язовій тканині. ­Утворений глутамат передає аміногрупу на продукт гліколізу – піруват з утворенням аланіну. Останній переноситься кров'ю до печінки, де служить субстратом глюконеогенезу. Сукупність цих процесів розглядають як глюкозо-аланіновий цикл між м'язами і печінкою. Катаболізм м'язових білків при голодуванні активується глюкокортикоїдами і зменшенням вмісту в крові інсуліну.

У печінці токсичний аміак, продукт дезамінування амінокислот, амінів, пуринових і піримідинових основ, перетворюється у нешкідливу сечовину, яка дифундує у кров і через нирки виводиться з організму.

 Фермент аргіназа, який каталізує заключну реакцію циклу утворення сечовини, знаходиться виключно у цитоплазмі гепатоцитів. При споживанні багатої білками їжі зростає вміст у печінці всіх ферментів циклу. При ураженнях печінки здатність її до синтезу сечовини тією чи іншою мірою знижується, що супроводжується гіперамоніємією, гіпераміноацидемією, аміноацидурією. Отруєння аміаком є важливим чинником печінкової коми.

У печінці здійснюється синтез замінних амінокислот при недостатньо­му їх споживанні. Таким чином, печінка може забезпечувати інші органи збалансованою сумішшю амінокислот, необхідною для синтезу білків.

Невелика кількість амінокислот перетворюється у печінці в низькомолекулярні азотовмісні речовини – пуринові і піримідинові нуклеотиди, гем, креатин, нікотинову кислоту, холін, карнітин, поліаміни. Швидкість синтезу цих речовин із амінокислот визначається потребою в них організму, а не концентрацією необхідних амінокислот. Катаболізм пуринових і піримідинових нуклеотидів також здійснюється у печінці.

 

Розщеплення гемоглобіну. Жовчні пігменти

Тривалість життя еритроцитів складає 110-120 днів. Еритроцити ­такого віку фагоцитуються макрофагами головним чином у селезінці, а також у кістковому мозку і печінці. Гем після звільнення з гемоглобіну повторно не використовується, його порфіриновий цикл перетворюється в жовчні пігменти, які виводяться з організму (рис.). І тільки залізо повторно застосовується для синтезу гемопротеїнів чи відкладається для запасання. Глобін гідролізується протеолітичними ферментами до амінокислот. Інші гемопротеїни (міоглобін, цитохроми, каталаза і пероксидази) розпадаються аналогічним чином.

Фермент ендоплазматичного ретикулума гемоксигеназа каталізує першу реакцію розпаду гему – розрив метинового містка між 2 пірольними кільцями внаслідок окиснення атома вуглецю до СО. При цьому утворюється пігмент зеленого кольору – вердоглобін (холеглобін), його молекула ще містить залізо і білок-глобін. Подальший розпад вердогло­біну відбувається самостійно і призводить до відщеплення заліза, білкового компонента й утворення одного з жовчних пігментів – білівердину. ­Одночасно спостерігається перерозподіл подвійних зв'язків і атомів водню в пірольних кільцях та метинових містках. Білівердин – пігмент зеленого кольору, побудований із чотирьох пірольних кілець, зв'язаних між собою лінійно за допомогою метинових містків (рис.).

Білівердинредуктаза відновлює білівердин до білірубіну, пігменту червоно-коричневого кольору. Частина білірубіну утворюється в печінці, а решта – в клітинах РЕС селезінки і кісткового мозку і повинна бути перенесена в печінку для подальших перетворень. Оскільки білірубін у воді малорозчинний, він транспортується кров'ю в комплексі з альбуміном (2 молекули білірубіну на 1 молекулу альбуміну).

У печінці відбувається відділення альбуміну і білірубін шляхом взаємодії з УДФ-глюкуроновою кислотою перетворюється в добре розчинний у воді білірубін-диглюкуронід. Реакцію кон'югації каталізує УДФ-глюкуронілтрансфераза.

Білірубін-диглюкуронід переходить у жовч і надходить у кишечник, де бактеріальні ферменти відщеплюють глюкуронову кислоту, після чого відновлюється білірубін до уробіліногену (мезобіліногену) і стеркобіліну. Основна частина стеркобіліногену виділяється з калом, окиснюючись на повітрі до стеркобіліну. Частина уробіліногену і ­стеркобіліногену всмоктується в кров і виділяється нирками в сечу. При окисненні у повітрі утворюються уробілін і стеркобілін. Уробі­ліноген і стеркобіліноген не мають кольору, а уробілін і стеркобілін оранжево-жовтого кольору. В нормі доросла людина за добу виділяє приблизно 250 мг жовчних пігментів із калом і 1-2 мг із сечею, невеличка частина уробіліногену (мезобіліногену), всмоктуючись, потрапляє через портальну вену в печінку, де розщеплюється до ди- і трипіролів або знову екс­кретується у жовч.

 

Якщо жовчні пігменти накопичуються в крові та інших рідинах орга­нізму внаслідок їх надлишкового утворення чи порушення виведення з організму, вони надають інтенсивного забарвлення шкірі. Такий стан називається жовтяницею.

Жовтяниця виявляюється, коли концентрація білірубіну в крові сягає 35 мкмоль/л або вище. Визначення концентрації жовчних пігментів у крові й сечі має важливе значення для диференціальної діагностики жовтяниць різного походження. Концентрація білірубіну в крові здорової людини дорівнює 8,5-20,5 мкмоль/л (5,0-12,0 мг/л), із них приблизно 75 % припадає на некон'югований білірубін, зв'язаний з альбуміном плазми. Для визначення білірубіну використовують реакцію з діазореактивом. Некон'югований білірубін називають непрямим, тому що він утворює з діазореактивом забарвлені продукти тільки при додаванні спирту, який звільняє білірубін із комплексу з альбуміном (непряма реакція). Білірубін-глюкуронід утворює забарвлені продукти з діазореактивом відразу і тому називається прямим, а також зв'язаним, або кон'югованим. Оскільки непрямий білірубін міцно зв'язаний з альбуміном плазми, він не фільтрується в клубочках нирок і не потрапляє в сечу. Прямий білірубін фільтрується в нирках і в нормі міститься в сечі в незначній кількості.

Розрізняють декілька видів жовтяниць. При гемолітичній (надпе­чінковій) жовтяниці із-за посиленого розпаду гемоглобіну підвищується концентрація в крові непрямого білірубіну. Така жовтяниця спостерігається при отруєнні деякими хімічними речовинами, зокрема сульфаніламідами, променевому ураженні, переливанні несумісної крові тощо.

Оскільки в цьому випадку зростає утворення в печінці білірубін-диглюкуроніду, то значно підвищується виділення з організму стеркобіліну й уробіліну. Білірубін у сечі не виявляється (табл. ).

Печінкова (паренхіматозна) жотяниця виникає внаслідок порушення здатності печінки утворювати білірубін-диглюкуронід і секретувати його в жовч (при вірусному та хронічному гепатиті, цирозі пе­чінки). У результаті пошкодження паренхіми печінки жовч надходить не тільки в жовчні капіляри, а й у кров, де збільшується концентрація і прямого, і непрямого білірубіну. Виведення стеркобіліну й уробіліну знижується. У сечі виявляється прямий білірубін. Іноді в сечі хворих на гепатит при невеликій жовтяниці (чи повній її відсутності) знаходять надзвичайно високу кількість уробіліногену (мезобіліногену), що є наслідком порушення розщеплення його в гепатоцитах до три- і дипіролів. Уробіліноген потрапляє у велике коло кровообігу і виділяється із сечею.

При закупоренні жовчних проток і блокаді відтоку жовчі спостерігається обтураційна (підпечінкова) жовтяниця. Переповнені жовчні канальці травмуються і пропускають білірубін у кров'яні капіляри. У крові з'являється велика кількість прямого білірубіну, в меншій мірі збільшується концентрація непрямого білірубіну. Кількість уробіліногену в сечі знижу­ється (або він повністю відсутній), а у великій кількості екскретується із сечею прямий білірубін. Через це сеча за кольором стає подібною до пива з яскраво-жовтою піною. Кал, у якому відсутні жовчні пігменти, стає сірувато-білим.

Відомі спадкові порушення надходження некон'югованого ­білірубіну з плазми в клітини печінки та процесу кон'югації білірубіну внаслідок дефекту глюкуронілтрансферази (синдроми Жільбера-Мейленграфта, Кріглера-Найяра). У крові хворих підвищується вміст непрямого білірубіну. Зустрічаються також спадкові гіпербілірубінемії, зумовлені переважним підвищенням у крові кон'югованого (прямого) білірубіну (синдроми Дубіна-Джонсона, Ротора). Молекулярний механізм цих захворювань невідомий.

У новонароджених дітей обмежена здатність утворювати білірубін-диглюкуронід і в крові може різко зростати концентрація непрямого білірубіну. Здатність печінки кон'югувати білірубін швидко зростає протягом перших декількох днів життя і тому жовтяниця новонароджених дітей у більшості випадків самовільно зникає.

У тяжких випадках жовтяниці новонароджених, особливо недоношених, дітей білірубін проявляє токсичну дію на мозок, що може призвести до незворотних розладів нервової системи і розумової відсталості. Для лікування дітей із тяжкими гіпербілірубінеміями виконують масивне переливання крові, застосовують лікарські препарати (барбітурати), які індукують синтез у печінці глюкуронілтрансферази, опромінюють УФ світлом, яке сприяє розпаду білірубіну до водорозчинних продуктів.

Дисбактеріоз кишечника, викликаний тривалим лікуванням антибіотиками тетрациклінового ряду, також може супроводжуватись порушенням обміну жовчних пігментів. За цих умов пригнічується ріст нормальної мікрофлори кишечника, яка відновлює білірубін до стеркобіліну. Тому при дисбактеріозі виділяються з калом проміжні продукти обміну білірубіну або і сам білірубін, який окиснюється киснем повітря в білівердин зеленуватого кольору.