
- •Біохімічні функції крові. Біохімія печінки. Функціональна біохімія нирок. Біохімія крові
- •Біохімія клітин крові
- •Гемоглобін
- •Синтез гему
- •Регуляція синтезу гемоглобіну
- •Міоглобін
- •Буферні системи крові
- •Плазма крові
- •Обмін вуглеводів у печінці
- •1. Із глюкозо-6-фосфату синтезується глікоген (рис. ), запасна форма глюкози в організмі.
- •Азотовий обмін у печінці
- •Знешкодження токсичних речовин у печінці
- •1. Приєднання глюкуронової кислоти. Активною формою її є уридиндифосфатглюкуронова кислота (удфгк), яка синтезується за такими реакціями:
- •Структурно-функціональні особливості нирок
- •Особливості обміну речовин у нирках
- •Механізм сечоутворення
- •Механізми реабсорбції речовин у канальцях нирок
- •Корекції осмоляльності плазми крові за умов неоднакового надходження води в організм
- •2. Обмеження надходження води призводить до підвищення осмоляльності плазми крові, що зумовлює утворення адг і створює умови для нормалізації.
- •Ниркова регуляція тиску крові
- •Нирки і кислотно-лужна рівновага
- •Властивості й склад сечі
Міоглобін
Крива насичення киснем гемоглобіну має S-подібну (сигмоїдну) форму. При низькому pО2 (до 10 мм рт.ст.) Нb має дуже малу спорідненість із О2, а після зв'язування першої молекули О2 крива насичення йде різко вгору. При 60 мм рт. ст. рівень насичення гемоглобіну киснем досягає 90 %, після чого знову повільно піднімається до повного насичення. Завдяки таким властивостям гемоглобін добре пристосований до зв'язування кисню в легенях і його звільнення в периферичних тканинах. Рушійною силою перенесення О2 служить різниця парціального тиску його в повітрі, рідинах і тканинах організму. pО2 в альвеолярному повітрі дорівнює 100 мм рт. ст., а у венозній крові – 40 мм рт. ст. Завдяки градієнту в 60 мм рт. ст. кисень швидко дифундує через альвеолярну мембрану і в результаті pО2 артеріальної крові складає близько 95 мм рт. ст. При такому pО2 Нb насичується киснем приблизно на 96 %. Якщо ж pО2 альвеолярного повітря буде меншим – до 80-70 мм рт. ст. (наприклад, на висоті), вміст оксигемоглобіну знизиться всього на 1-3 %.
У міжклітинній рідині тканин організму pО2 складає 35 мм рт.ст. і менше. Під час протікання крові через капіляри оксигемоглобін дисоціює, причому ступінь дисоціації залежить від інтенсивності окиснювальних процесів у тканинах. Кисень дифундує з еритроцитів через плазму в міжклітинну рідину, а потім у клітини тканин, де в мітохондріях перетворюється у воду. У венозній крові в стані спокою pО2 дорівнює 40 мм рт.ст., а венозний гемоглобін насичений киснем приблизно на 64 %. Таким чином, приблизно одна третина зв'язаного кисню звільняється в тканинах (6,5 мл О2 із 100 мл крові). При фізичній роботі pО2 у м'язах знижується до 25-10 мм рт.ст. і гемоглобін віддає більше кисню. Крім того, через працюючий м'яз збільшується кровообіг.
На зв'язування гемоглобіном О2 впливають, крім pО2, температура, рН, концентрація СО2 і 2,3-дифосфогліцерату (ДФГ) (рис. ).
Підвищення концентрації Н+ і СО2 знижує спорідненість гемоглобіну з О2 і навпаки, сприяє звільненню кисню з оксигемоглобіну. Це явище називається ефектом К. Бора. Так само діє підвищення температури і концентрації в еритроцитах ДФГ. Крива насичення гемоглобіну киснем під дією цих факторів зміщується вправо (рис. 17.4). ДФГ – проміжний продукт гліколізу – знаходиться в еритроцитах і, зв'язуючись з оксигемоглобіном, сприяє дисоціації кисню. Концентрація ДФГ зростає при підйомах на велику висоту (3-4 км над рівнем моря), а також при гіпоксіях, зумовлених патологічними процесами. Збільшення ступеня дисоціації оксигемоглобіну в тканинах буде компенсувати зниження кількості кисню, який зв'язуватиметься гемоглобіном у легенях в умовах гіпоксії.
Транспорт СО2 (діоксиду вуглецю)
СО2 утворюється в тканинах (основне джерело – реакції окиснювального декарбоксилювання альфа-кетокислот у матриксі мітохондрій). За добу у фізіологічних умовах легенями виводиться 300-600 л СО2 (в середньому 480 л або 22 моля). pCО22 у міжклітинній рідині складає приблизно 50 мм рт. ст., а в артеріальній крові – 40 мм рт. ст. І хоч різниця pCО2 значно менша від аналогічної для О2, але коефіцієнт дифузії СО2 у 30 разів більший і він швидко дифундує з тканин через міжклітинну рідину, стінки капілярів у кров. Вміст СО2 у венозній крові становить 55-60 об. %, а в артеріальній – 50 об. %. Таким чином, із тканин до легень переноситься 5-10 мл СО2 на кожні 100 мл крові. У формі розчиненого в плазмі газу транспортується приблизно 6 %. Основна кількість СО2 переноситься у вигляді гідрокарбонатів, які утворюються внаслідок гідратації СО2 і дисоціації вугільної кислоти.
Гідратація СО2 – процес дуже повільний, і тільки в еритроцитах є фермент карбоангідраза, який каталізує цю реакцію. Протони, які звільнюються при дисоціації вугільної кислоти, зв'язуються специфічними амінокислотними залишками гемоглобіну. Це сприяє звільненню кисню з оксигемоглобіну (ефект Бора) в капілярах тканин. Таким чином, дисоціація оксигемоглобіну в тканинах зумовлюється низьким pО2 в тканинах, зв'язуванням іонів Н+, а також прямим приєднанням СО2 до гемоглобіну.
Уся кількість СО2, що утворюється в тканинах за добу, еквівалентна 13000 ммоль Н+/2 л конц. НСl. Величезна кількість іонів Н+ могла би миттєво знизити рН крові й міжклітинної рідини до 1,0, якщо б вони не зв'язувались із гемоглобіном. Дезоксигемоглобін, на відміну від оксигемоглобіну, є слабкою кислотою.
Аніони НСО3- виходять за градієнтом концентрації з еритроцитів у плазму, а замість них для збереження електронейтральності в еритроцити надходять іони Сl-.
Коли венозна кров потрапляє в капіляри легень, О2 дифундує в еритроцити, утворюється оксигемоглобін, що як сильна кислота дисоціює, звільнюючи іони водню. Гідрокарбонати плазми також надходять у еритроцити, взаємодіють із протонами, з вугільної кислоти під дією карбоангідрази звільняється СО2, який дифундує в альвеолярне повітря. Переходу СО2 з еритроцитів в альвеолярний простір сприяють градієнт парціального тиску СО2 і висока дифузійна здатність. Схематично процеси, що відбуваються в капілярах тканин і капілярах легень, зображені на рис.
Як згадувалось вище, гемоглобін безпосередньо зв'язує СО2, N‑кінцевою альфа-аміногрупою кожного із 4-х поліпептидних ланцюгів з утворенням карбгемоглобіну (карбаміногемоглобіну):
Реакція зворотна і в капілярах тканин внаслідок високого pО2 відбувається зліва направо, а в легенях – у зворотному напрямку. У вигляді карбгемоглобіну переноситься незначна кількість СО2, яка зменшує спорідненість його з О2 і навпаки, зв'язування в легенях гемоглобіном кисню зменшує спорідненість його із СО2.
Таким чином, гемоглобін може зв'язувати по 4 молекули О2 чи СО2, приблизно 4 іони Н+ й 1 молекулу ДФГ. Зміна концентрації будь-якого з цих 4 лігандів гемоглобіну через зміну конформації молекули білка регулює його спорідненість з іншими лігандами. Завдяки цьому молекула гемоглобіну прекрасно пристосована до здійснення одночасного переносуеритроцитами О2, СО2 й іонів Н+.
Карбоксигемоглобін, метгемоглобін
Замість кисню до гемоглобіну може приєднуватись оксид вуглецю (II) з утворенням карбоксигемоглобіну (НвСО). Спорідненість гемоглобіну людини із СО більше ніж у 200 раз перевищує спорідненість із О2. Токсичну дію на організм проявляють навіть невеликі концентрації в повітрі оксиду вуглецю, коли частина гемових груп гемоглобіну зв'язана із СО, а частина – з О2. Такі молекули гемоглобіну утримують кисень міцніше, ніж гемоглобін, з яким зв'язані 4 молекули кисню. Таким чином, при отруєнні СО гіпоксія зумовлена не тільки блокуванням частини гемів гемоглобіну, а й порушенням процесу дезоксигенації гемів, з якими зв'язані молекули О2.
Fе2+ гемоглобіну окиснюється до Fе3+ під дією таких агентів (окисників), як амілнітрит, анілін, нітробензол, нітрати і нітрити, тіосульфати, фериціанід. Форма гемоглобіну з Fе3+називається метгемоглобіном (МеtНb). Він не приєднує ні О2, ні СО і, таким чином, не може забезпечувати транспорт кисню.
Окисно-відновний потенціал пари Fе2+/Нb–Fе3+/MetHb при рН 7 дорівнює +0,17 В, що вказує на можливість автоокиснення гемоглобіну до метгемоглобіну в середовищі з високою концентрацією кисню, яким є еритроцит. Дійсно, щоденно в організмі людини 0,5 % усього гемоглобіну перетворюється в метгемоглобін. Але в еритроцитах міститься фермент метгемоглобінредуктаза, який каталізує відновлення метгемоглобіну до гемоглобіну, тому фактично концентрація метгемоглобіну в крові в нормі невелика. Активність метгемоглобінредуктази знижена при спадковому захворюванні – сімейній метгемоглобінемії, головною ознакою якої є ціаноз, виражений різною мірою, що пов'язано з різною концентрацією метгемоглобіну (від 25 до 45 %). Метгемоглобінемію спостерігають також у клініці після прийому хворими сульфаніламідів, фенацетину, саліцилатів. Окиснення гемоглобіну до метгемоглобіну киснем зумовлює утворення супероксидного аніон-радикала (О2•):
Супероксидний радикал, який проявляє токсичну активність, під дією супероксиддисмутази перетворюється в Н2О2. Останній розпадається під впливом каталази і пероксидаз еритроцитів.
Fе 3+ у метгемоглобіні може взаємодіяти з різними аніонами (ОН‑, Сl‑, СN-, S2- й ін.). Токсична дія ціанідів зумовлена взаємодією їх із Fе3+ цитохромоксидази і гальмуванням у результаті тканинного дихання.
Оскільки в організмі міститься значно більше гемоглобіну, ніж цитохромоксидази, як протиотруту при отруєнні синильною кислотою і її солями використовують амілнітрит, нітрит натрію, тіосульфат натрію, які зумовлюють утворення метгемоглобіну, а потім – ціанметгемоглобіну. Ця сполука не токсична і може повільно зазнавати подальших перетворень.