
- •Біохімічні функції крові. Біохімія печінки. Функціональна біохімія нирок. Біохімія крові
- •Біохімія клітин крові
- •Гемоглобін
- •Синтез гему
- •Регуляція синтезу гемоглобіну
- •Міоглобін
- •Буферні системи крові
- •Плазма крові
- •Обмін вуглеводів у печінці
- •1. Із глюкозо-6-фосфату синтезується глікоген (рис. ), запасна форма глюкози в організмі.
- •Азотовий обмін у печінці
- •Знешкодження токсичних речовин у печінці
- •1. Приєднання глюкуронової кислоти. Активною формою її є уридиндифосфатглюкуронова кислота (удфгк), яка синтезується за такими реакціями:
- •Структурно-функціональні особливості нирок
- •Особливості обміну речовин у нирках
- •Механізм сечоутворення
- •Механізми реабсорбції речовин у канальцях нирок
- •Корекції осмоляльності плазми крові за умов неоднакового надходження води в організм
- •2. Обмеження надходження води призводить до підвищення осмоляльності плазми крові, що зумовлює утворення адг і створює умови для нормалізації.
- •Ниркова регуляція тиску крові
- •Нирки і кислотно-лужна рівновага
- •Властивості й склад сечі
Корекції осмоляльності плазми крові за умов неоднакового надходження води в організм
1. Надмірне надходження води призводить до розведення позаклітинної рідини. При цьому зниження осмоляльності гальмує утворення АДГ. Оскільки стінки збірних трубочок стають непроникними для води, то утворюється розведена сеча.
Водне навантаження спричиняє максимальний діурез, при якому осмоляльність на кінці збірних трубочок може дорівнювати тільки 600 мосм/л, тоді як максимум сягає 1400 мосм/л. Збільшення об'єму циркулюючої рідини посилює кровообіг у нирках, що сприяє вимиванню гіперосмотичного середовища мозкового шару нирок і поверненню частини розчинених речовин у кровообіг. Таким чином, із сечею не тільки виводиться більше води, ніж у нормі, але і більше розчинених речовин потрапляє в загальний кровообіг у результаті реабсорбції. Але гіперосмоляльність у мозковому шарі нирки, а отже, і здатність до максимального концентрування сечі можуть повністю відновитися до початкового рівня через декілька днів після припинення водного навантаження.
2. Обмеження надходження води призводить до підвищення осмоляльності плазми крові, що зумовлює утворення адг і створює умови для нормалізації.
За фізіологічних умов найбільше значення для створення нормального рівня осмоляльності клубочкового фільтрату належить натрію і зв'язаним із ним аніонам. Активне видалення натрію з проксимального відділу канальців супроводжується пасивною реабсорбцією води.
Ниркова регуляція тиску крові
Нирки здійснюють контроль рівня артеріального кров'яного тиску. Ряд різновидів гіпертонії людини пов'язаний із різними нирковими порушеннями.
Експериментальну гіпертонію в собак можна викликати шляхом часткової перев'язки ниркових артерій, обмежуючи тим самим нирковий кровообіг. Такий самий ефект спостерігається і за умов денервації нирки, що свідчить про гуморальний механізм даної експериментальної гіпертонії. До виникнення цієї гіпертонії має відношення фермент ренін, що виробляється ниркою. Ренін діє на білок плазми крові ангіотензиноген (альфа2‑глобулінова фракція), який синтезується в печінці, і відщеплює від нього поліпептид – ангіотензин І.
Доведено, що у хворих на есенціальну гіпертонію вміст реніну в плазмі підвищений. У здорових людей ренін плазми крові знаходиться в інгібованому стані завдяки дії речовин, що утворюються із серинфосфатиду. Треба підкреслити, що сам ренін не впливає на судини. Пресорна дія викликається ангіотензином ІІ, який утворюється з ангіотензину І під впливом карбоксикатепсину. Останній відщеплює від ангіотензину І дипептид. Продукт реакції – ангіотензин ІІ – має дуже сильну судинозвужувальну дію і викликає виникнення гіпертонії. Усім тканинам організму, особливо в кишечнику і нирках, притаманна висока пептидазна активність, що руйнує ангіотензин ІІ.
Утворення і виділення реніну здійснюється юкстагломерулярним апаратом для здійснення гомеостатичного контролю над артеріальним тиском (у відповідь на його зниження). Крім того, зменшення об'єму крові та позаклітинної концентрації іонів натрію або калію стимулює поза клітиною посилення синтезу і виділення реніну. Ангіотензин ІІ діє безпосередньо на надниркові залози, стимулюючи виділення альдостерону, який викликає затримку в організмі іонів натрію. Гіпертензивна дія ангіотензину ІІ регулюється також кінінами плазми, які мають здатність підвищувати проникність капілярів і розширювати судини, що спричиняє зниження артеріального тиску. Прикладом таких кінінів можуть бути калідин та брадикінін. Це пептиди, які утворюються в результаті протеолітичного розщеплення кініногену, що міститься в глобуліновій фракції плазми. Таке розщеплення можуть викликати трипсин, плазмін та інші протеолітичні ферменти тканин і рідин організму – калікреїни. Брадикінін (нонапептид) виникає під впливом калікреїну плазми, а калідин (декапептид) утворюється при дії на кініноген калікреїнів підшлункової залози й інших органів (рис.).
Калідин може перетворюватись на брадикінін за допомогою амінопептидази. Припускають, що активність ренін-ангіотензинової системи тісно пов'язана з утворенням простагландинів у нирці. Кожна з цих систем бере участь у регуляції водно-сольового обміну і тиску крові. Порушення водно-сольового обміну призводять до змін функціонування ренін-ангіотензинової системи. Синтезовані в нирках простагландини змінюють чутливість ниркових клітин до дії певних гормонів. В останні роки доведено, що в нирках синтезується також еритропоетин, який стимулює кістковомозкове кровотворення. Синтез еритропоетину зумовлюється крововтратами, шоком, гіпоксією та ін.