Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теоретические основы радиолокации 1.doc
Скачиваний:
34
Добавлен:
01.05.2025
Размер:
33.82 Mб
Скачать

2.1.3. Оптимальное обнаружение полностью известного сигнала

Будем полагать, что ожидаемый сигнал x(t, а) полностью известен, т.е. из­вестны его форма, амплитуда, временное положение и т.д. Обнаружитель дол­жен выработать решение о наличии или отсутствии сигнала. На вход обнару­жителя поступает сигнал y(t), который обнаруживается на фоне белого гауссов- ского шума n(t).

Отношение правдоподобия для этого случая может быть представлено в следующем виде

, (15)

где - фиксируемый при обнаружении параметр или совокупность параметров ожидаемого сигнала;

N0 — спектральная плотность шума; Э( ) - энергия ожидаемого игнала; Z( ) - корреляционный интеграл

. (16)

Отношение правдоподобия является монотонной функцией корреляцион­ного интеграла, который может быть рассчитан по принятой реализации y(t) для любого фиксированного параметра . Сравнение отношения правдоподо­бия с порогом l0 эквивалентно сравнению корреляционного интеграла с соот­ветствующим порогом z0.

.

Таким образом, оптимальный обнаружитель должен вычислять корреля­ционный интеграл (16) и сравнивать его с порогом. Структурная схема про­стейшего обнаружителя сигнала с полностью известными параметрами изобра­жена на рис. 2.5.

Величина корреляционного интеграла сравнивается с порогом z0. Уровень порога подбирается так, чтобы вероятность F ложного превышения порога

Рис. 2.5. Простейший корреляционный обнаружитель

была не больше допустимой. Опорное колебание x(t, ) может вырабатываться специальным гетеродином или получаться непосредственно от передатчика пу­тем задержки сигнала на время .

2.1.4. Оптимальное обнаружение сигнала со случайной начальной фазой

Обычно сигнал, принимаемый приемником, неизвестен точно. Как пра­вило, его амплитуда, начальная фаза, время запаздывания и другие параметры заранее неизвестны. Возможны два способа приема сигналов с неизвестными параметрами. Первый способ предполагает предварительное измерение всех его неизвестных параметров и последующий прием как полностью известного сигнала. Этот способ требует выделения специального времени на выполнение указанных выше измерений, усложнения аппаратуры и значительной величины отношения сигнал-шум. Этот способ может быть заменен другим, при котором неизвестные параметры сигнала считаются случайными, а его прием ведется без учета конкретных значений параметров путем статистического усреднения принятого колебания.

Методика определения отношения правдоподобия для сигналов со слу­чайными нефиксированными параметрами по принятой реализации y(t) сводит­ся:

  1. к вычислению корреляционного интеграла, энергии ожидаемого сигнала и частного отношения правдоподобия при фиксированных параметрах и ( случайный нефиксированный при обнаружении параметр или совокупность па­- раметров: начальная фаза, амплитуда);

  2. к усреднению частного отношения правдоподобия по случайному нефикси­ рованному параметру .

Для указанной выше ситуации частное отношение правдоподобия опре­делится следующим образом:

, (17)

где Z и Э - частные значения корреляционного интеграла и нергии сигнала.

(18)

. (17)

Ведя речь о фазовой структуре сигналов, следует определиться с коге­рентностью. Когерентными называют сигналы с закономерной фазовой струк­турой, однако начальная фаза радиолокационного сигнала обычно является неизвестной случайной величиной. Такой сигнал может быть представлен в ви­де:

, (20)

где .

sin

Тогда частное значение корреляционного интеграла (18) приводится к виду:

,

где ,

,

Для сигнала, содержащего большое число периодов колебаний, частное значение энергии от не зависит .

Учитывая, что все случайные начальные фазы равновозможны, полагаем их распределение равномерным в пределах от 0 до 2 с плотностью вероятности . Определяя математическое ожидание частного отношения прав­доподобия и вводя модифицированную функцию Бесселя первого рода нулево­го порядка , получим

(20)

где Z - модульное значение корреляционного интеграла, определяемое для принятой реализации y(t) с учетом фиксированного параметра а

(22)

Таким образом, для сигнала с неизвестной начальной фазой отношение правдоподобия является монотонной функцией модульного значения корреля­ционного интеграла. Структурная схема оптимального обнаружителя сигнала со случайной начальной фазой изображена на рис. 2.6.

Рис. 2.6. Структурная схема оптимального обнаружителя сигнала со случайной фазой

Характеристики обнаружения сигнала со случайной начальной фазой имеют тот же вид, что и при точно известном сигнале, но лежат несколько пра­вее, что свидетельствует о проигрыше в отношении сигнал—шум.

Если реализуется прием одиночного сигнала со случайной начальной фа­зой, простейшая схема оптимального обнаружителя имеет вид, изображенный на рис. 2.7.

Рис. 2.7. Оптимальный приемник для обнаружения сигнала с неизвестной начальной фазой

Согласованный фильтр такой, у которого коэффициент передачи K есть величина, комплексно сопряженная спектру S сигнала. Импульсная переходная характеристика согласованного фильтра с точностью до постоянно­го множителя является зеркальным отражением входного сигнала на оси вре­мени. Такой фильтр обеспечивает максимальное отношение сигнал-шум.

Если принимается последовательность импульсных сигналов со случай­ной начальной фазой, то выбор схемы обнаружителя существенно зависит от взаимосвязи фаз отдельных сигналов. При когерентной пачке импульсных сиг­налов (имеет место функциональная зависимость фазы колебаний от времени) оптимальный приемник может быть реализован в соответствии со структурной схемой, изображенной на рис. 2.8.

Рис. 2.8. Оптимальный приемник для обнаружения пачки когерентных импульсов одинаковой амплитуды и длительности

Согласованный фильтр в данной схеме является оптимальным для от­дельного импульса пачки. Линия задержки имеет (N-1) отводов (Nчисло им­пульсов в пачке). Если период следования импульсов Т, то общая задержка в линии равна (N-l)-T. В момент окончания пачки импульсов на выходе сумма­тора имеет место наибольшее значение отношения сигнал-шум, характеризуе­мое суммарной энергией пачки импульсов.

Для некогерентной пачки импульсов (начальные фазы отдельных им­пульсов статистически независимы) оптимальный приемник принимает вид, изображенный на рис. 2.9.

Рис. 2.9. Оптимальный приемник для обнаружения пачки одинаковых некогерентных импульсов

Приемник включает: фильтр, согласованный с одиночным импульсным сигналом; детектор амплитудный; рециркулятор, используемый для накопления видеоимпульсов; пороговое устройство. Рециркулятор имеет коэффициент пе­редачи меньше единицы, вследствие чего накопление импульсов происходит неоптимальным образом и поэтому схема на рис. 2.9 является квазиоптималь­ной.

В момент окончания пачки импульсов отношение сигнал-шум на выходе рециркулятора имеет максимальное значение. Суммирование импульсных сиг­налов происходит после нелинейного элемента - детектора амплитудного, ко­торый ухудшает отношение сигнал-шум на выходе по сравнению с этим отно­шением до детектора. Вследствие этого, результирующее отношение сигнал-шум некогерентной пачки импульсов оказывается меньшим, чем у когерентной.

2.1.5. Оптимальное обнаружение сигнала со случайными амплитудой и начальной фазой

Часто случайной бывает не только начальная фаза, но и амплитуда, что приводит к дальнейшему ухудшению характеристик обнаружения по сравне­нию с полностью известным сигналом. Для этого случая сигнал может быть за­писан следующим образом:

.

Для такого сигнала частное отношение правдоподобия при фиксированном В будет равно

где Z(b) = BZ, Э(B) = В2Э; Э и Z - энергия и модульное значение корреляци­онного интеграла, рассчитанные по ожидаемому сигналу, соответствую-

щему В=1.

При этом величина Э выбирается равной средней энергии

.

Задаваясь релеевским распределением амплитуд

окончательно получим:

(23)

Для сигнала с неизвестными амплитудой и начальной фазой отношение правдоподобия является монотонной функцией модульного значения корреля­ционного интеграла Z( ), как и в случае, когда неизвестна только начальная фа­за. Совпадение алгоритмов обнаружения позволяет использовать в обоих слу­чаях одинаковые схемы обработки.

Особенность характеристик обнаружения в рассматриваемом случае со­стоит в том, что с ростом отношения сигнал-шум вероятность обнаружения возрастает сначала быстро, а после достижения значений D = 0,5 - 0,6 это уве­личение замедляется, а затем становится очень медленным. Это объясняется тем, что при действии таких сигналов изменяются лишь параметры распреде­ления Релея величины Z в оптимальном обнаружителе.

На рисунке 2.10 изображены кривые обнаружения для различных сигна­лов.

Рис. 2.10. Кривые обнаружения для сигналов: с полностью извест­ными параметрами (штрих-пунктир), со случайной начальной фазой (пунктир), со случайными амплитудой и начальной фазой (сплош­ные линии)

Приведенные выше схемы являются оптимальными лишь тогда, когда положение ожидаемого сигнала на оси времени известно. Ответ о наличии сиг­нала с неизвестным временем запаздывания может быть дан, если установить факт его наличия или отсутствия для различных значений времени запаздыва­ния. Приходим, таким образом, к необходимости многоканальных корреляци­онных схем, что является недостатком при реализации алгоритмов обнаруже­ния в радиолокации.

Для одноканальной обработки радиолокационной информации могут быть применены фильтровые и корреляционно—фильтровые системы.