- •Глава I Пространственно-временная обработка радиолокационной информации
- •1.2. Пространственно-временная обработка
- •1.3. Пространственно-временная обработка радиолокационной информации
- •Глава II Первичная обработка радиолокационной информации
- •2.1. Обнаружение радиолокационных сигналов
- •2.1.3. Оптимальное обнаружение полностью известного сигнала
- •2.1.6. Принципы фильтровой и корреляционно—фильтровой обработки сигналов
- •2.1.7. Принципы оптимальной обработки некогерентных сигналов
- •2.1.8. Принципы обработки широкополосных сигналов
- •2.1.9. Ранговые обнаружители
- •2.1.10. Стабилизация уровня ложных тревог
- •2.2. Измерение параметров радиолокационных сигналов
- •2.2. 6. Методы измерения угловых координат
- •2.2.7. Многоканальные (моноимпулъсные) методы измерения угловых координат
- •2.2.8. Методы измерения скорости
- •2.2.9. Методы определения местоположения объектов
- •2.3.4. Разрешаемый объем
- •2.4. Распознавание воздушных объектов
- •2.5. Обработка сигналов в условиях воздействия пассивных помех и отражений от «местных предметов».
- •2.5.3. Когерентность сигналов
- •2.5.5. Радиолокаторы с внешней когерентностью
- •2.5.7. Селекция сигналов движущихся целей
- •2.5.8. Особенности систем сдц
- •2.5.8.1. Понятие слепого направления.
- •2.5.8.2, «Слепые» фазы.
- •2.5.9. Подавитель на промежуточной частоте
- •2.5.10. Череспериодное вычитание
- •2.5.11. «Слепые» скорости воздушных объектов
- •2.5.12. Применение систем сдц для компенсации сигналов
- •2.5.13. Цифровая система селекции движущихся целей
- •2,5.14. Основные характеристики систем сдц
- •2.5.15. Некоторые методы скоростной селекции
- •2.6. Обработка сигналов в условиях воздействия импульсных помех
- •2.6.1. Обработка сигналов в условиях воздействия несинхронных импульсных помех
- •2.6.2. Обработка сигнала на фоне шума и сигнальных импульсных помех
- •2.6.2.1. Понятие о динамическом диапазоне сигналов и помех и необходимости их нормирования
- •2.6.2.2. Нормирование уровня длинных импульсных помех с помощью схемы шоу
- •2.6.2.3. Нормирование уровня длинных импульсных помех с помощью схемы рос
- •2.6.2.4. Нормирование уровня коротких и длинных помех с помощью схемы шоу-рос
- •2.7. Системы подавления сигналов боковых лепестков диаграмм направленности антенн
- •2.7.1. Классификация систем подавления сигналов боковых лепестков
- •2.8. Активные маскирующие помехи и принципы защиты от них
- •2.8.2. Искусственные маскирующие активные помехи, особенности воздействия и способы создания
- •3.3, Алгоритм вторичной обработки
- •Глава IV третичная обработка информации
- •4.1. Принципы, способы и классификация третичной обработки радиолокационной информации
- •5.3. Кодирование запросных и ответных сигналов
- •5.3.1. Методы кодирования запросных и ответных сигналов
- •5.3.2. Структура запросных сигналов
- •5.3.3. Структура ответных сигналов
- •5.3.3.1. Ответный сигнал режима увд
- •6.4.3.2 Ответный сигнал режима rbs
- •5.4. Дешифрация ответной информации
- •5.4.1. Дешифрация сигналов в режиме увд
- •5.4.2. Дешифратор режима международного диапазона
- •5.5. Дискретно-адресная система вторичной радиолокации
- •5.6.. Моноимпульсный метод измерения
- •Содержание
- •Глава I Пространственно - временная обработка радиолокационной информации
- •Глава II Первичная обработка радиолокационной информации
- •Глава III Вторичная обработка радиолокационной информации
- •Глава IV Третичная обработка информации
- •Глава V Обработка сигналов средств вторичной радиолокации
5.4. Дешифрация ответной информации
5.4.1. Дешифрация сигналов в режиме увд
Входная информация, включающая в себя запросные коды и ответные видеосигналы режимов УВД и RBS, с выходов соответствующих корректирующих видеоусилителей поступает на входы трех дешифраторов (рис. 5.13).
Состав обрабатываемой информации определяется структурой запросных кодов. Импульсы запросных кодов Р1 и Р3 поступают на дешифратор режимов, где происходит их декодирование и формирование соответствующих стробов режимов А, В, С, D.
Эти стробы являются служебными для селектирования определенной ответной информации. Они поступают через плату сопряжения на выходные устройства.
В плате сопряжения осуществляется нормирования служебных сигналов ВРЛ и распределение их на устройства аппаратуры.
Дешифраторы УВД и RBS включают в себя дешифраторы координатных, ключевых кодов, кодов «Бедствие», «Знак», а также дешифраторы информации, поступающей из приемных устройств ВРЛ.
Для обработки информации от ВС, находящихся на незначительном удалении друг от друга, дешифраторы выполнены как двухканальные, что позволяет производить декодирование сигналов при наложении ответных кодов.
Декодированная координатная информация очищается в фильтре от несинхронных помех. Декодированная информационная посылка ИКАО о высоте полета, передаваемая в футах, преобразуется в метры и поступает так же, как и информационная посылка УВД, на выходные устройства. В режиме А информационная посылка проходит на выходные устройства через преобразователь футы-метры без изменения.
Принцип действия дешифратора УВД
Дешифратор УВД (рис. 5.13) осуществляет декодирование координатного кода, кода «бедствие», ключевого кода, кода «Знак» и информационного слова, выдаваемых ответчиком при запросе кодами ЗК1 и ЗК2.
Дешифратор декодирует одиночные и переплетенные ответные коды, образованные в результате наложения двух ответов для близко летящих ВС, исправляет в ответной посылке одиночные и обнаруживает двойные ошибки. Поскольку каждый разряд информационного слова передается на двух позициях, то возможно преобразование одиночных и двойных ошибок. Одиночной ошибкой считается стирание или возникновение одного из символов в разряде информационного слова. Двойной ошибкой считаются следующие искажения: стирание одного и возникновение другого символа в разряде, образование двух ошибочных символов, стирание двух символов. Так как ответчик при работе кодами УВД на каждый запрос дважды выдает информационное слово, то для обнаружения и исправления ошибок в дешифраторе УВД осуществляется запоминание первого 20-разрядного слова и его поразрядное сравнение с одноименными позициями второго слова.
Дешифратор УВД осуществляет декодирование ключевого кода при одиночных ответах по логике «2 из 3», а при переплетенных ответных кодах - по логике «3 из 3», т.е. совпадением любых двух из трех или трех из трех импульсов ключевого кода.
Входной ответный сигнал поступает на дешифратор кодов ДК1, в котором осуществляются его нормализация по амплитуде и селекция по длительности. Информационное слово без задержки поступает в дешифратор информации. Импульсы стирания запрещают прохождение информационных импульсов на выход платы ДК1. После задержки на 6 мкс в ДК1 все импульсы, предшествующие информационному слову, поступают на дешифратор кодов ДК2, где происходит их дополнительная задержка на 22 мкс, которая позволяет осуществлять декодирование координатного кода, кода «бедствие» и ключевого кода по логике «3 из 3». В дешифраторе кодов ДКЗ декодированная координатная отметка задерживается еще на 16 мкс для совмещения с последним импульсом ключевого кода. В случае одиночных ответов в плате ДКЗ осуществляется также декодирование ключевого кода по логике «2 из 3», что позволяет увеличить вероятность декодирования ключевого кода при подавлении одного из трех импульсов ключевого кода.
Для декодирования информационного слова, служат кварцевый калибратор КК и дешифратор информации ДИ. Декодированным импульс ключевого кода с выхода дешифратора ДКЗ запускает кварцевый калибратор, вырабатывающий опорные импульсы частотой 4 МГц. Из импульсов кварцевого калибратора формируются импульсы сдвига, позволяющие выделить и записать в дешифраторе информации только информационное слово длительностью 160 мкс. В устройстве контроля один раз в 10с формируется контрольный текст, который обрабатывается дешифратором. После анализа выносится решение о состоянии дешифратора.
