Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теоретические основы радиолокации 1.doc
Скачиваний:
34
Добавлен:
01.05.2025
Размер:
33.82 Mб
Скачать

Глава II Первичная обработка радиолокационной информации

2.1. Обнаружение радиолокационных сигналов

2.1.1. Качественные показатели и критерии оптимального обнаружения сигналов

Первая задача радиолокационного приема - задача обнаружения сигнала. В результате процесса обнаружения должно быть выдано решение о наличии или отсутствии цели в, произвольном разрешаемом объеме зоны обнаружения . средства радиолокации (СРЛ). Решение может быть принято при двух взаимно исключающих условиях:

условие А - «объект есть»,

условие Ао - «объекта нет», которые в процессе получения решения неизвестны.

За счет помех и флюктуации полезного сигнала каждому условию могут соответствовать два вида решений:

решение А *«объект есть»,

решение A* - «объекта нет»,

При обнаружении возможны четыре ситуации совмещения случайных событий «условия» и «решения»:

1) ситуация А (правильное обнаружение);

2) ситуация A *A (пропуск цели);

  1. ситуация А 0 (ложная тревога);

  2. ситуация А *А0 (правильное не обнаружение)

Перечисленным ситуациям соответствуют четыре вероятности совмеще­ния событий: Р(А ), Р(A *A ), Р(А 0), Р(А *А0). Каждому ошибочному решению ставится в соответствие некоторая плата — стоимость ошибки . Для безошибочных решений эта стоимость равна

0 . Средняя стоимость (математическое ожидание стоимости) ошибочных решений оп­ределится следующим образом:

(1)

Лучшей системой обработки считается та, которая удовлетворяет крите­рию минимума этой стоимости - критерию минимума среднего риска. На прак­тике переходят к условным вероятностям, являющимся качественными показа­телями обнаружения при условиях наличия и отсутствия объекта радиолока­ции.

Качественными показателями обнаружения при условии наличия объекта являются соответствующие условные вероятности правильного обнаружения

(2)

и пропуска цели

(3)

Поскольку соответствующие одному и тому же условию решения и взаимоисключающие, то

Качественными показателями обнаружения при условии отсутствия объ­екта являются условные вероятности ложной тревоги

(4)

и правильного обнаружения

(5)

причем

Используя приведенные соотношения (2) - (5), выражение (1) для сред­ней стоимости ошибки можно представить в следующем виде

или после замены D-1-D и простых преобразований,

, (6)

где

При этом критерий оптимизации обнаружения по минимуму среднего риска сводится к весовому критерию

I = D-l0F = max. (7)

Последний показывает, что по совокупности требований повышения ус­ловной вероятности правильного обнаружения D и понижения условной веро­ятности ложной тревоги F следует стремиться к увеличению «взвешенной» разности D- l0F. Множитель l0, называемый весовым множителем, зависит от

соотношения стоимостей ошибок каждого вида и вероятностей наличия или от­сутствия объектов в исследуемом участке пространства. Дать рекомендации по выбору D и F затруднительно. Допустимые значения условных вероятностей правильного обнаружения и ложной тревоги обычно устанавливают из практи­ческих соображений.

Оптимизация обнаружителей может достигаться одновременным умень­шением условных вероятностей ложной тревоги и пропуска цели. В таких об­наружителях оба вида ошибок нежелательны в одной и той же степени. Поэто­му полагают и средний риск приобретет смысл суммарной вероят­ности ошибки ош)

Условие минимума этой вероятности ош = min) носит название критерия иде­ального наблюдателя.

Ложная тревога является опасным явлением, ибо может вызвать крайне нежелательные, а порой и необратимые, последствия. Увеличение вероятности ложной тревоги не может быть допущено даже за счет снижения вероятности пропуска сигнала. Если обнаружитель максимизирует разность D- l0F, то фиксация F влечет за собой максимизацию вероятности правильного обнару­жения D. Следовательно, оптимальный обнаружитель обеспечивает наиболь­шую, среди всех обнаружителей, вероятность правильного обнаружения D и

.

Фиксированном значении вероятности ложной тревоги F. Это является основой критерия Наймана – Пирсона.

Обычно значения априорных вероятностей Р(А0) и Р(А1) заранее неиз­вестны. Наибольшую информативность, в этом случае, обеспечивает равенство этих вероятностей Р(А0) = Р(А1) = 0,5. Тогда вероятность суммарной ошибки

.

Условие минимума вероятности ошибочного решения

носит название критерия максимального правдоподобия.

В радиолокации наибольшее применение находит критерий Неймана -Пирсона. При этом основными качественными показателями радиолокационно­го обнаружения являются условные вероятности правильного обнаружения D и ложной тревоги F.

2.1.2. Оптимизация обнаружения

Обнаружитель сигнала решает задачу выяснения следующего: содержит принимаемое колебание отраженный сигнал или нет. На вход обнаружителя поступает колебание у, которое при отсутствии сигнала представляет собой шум п, а при наличии сигнала - сумму шума и сигнала (п+х). В общем случае входной сигнал можно записать в такой форме

у = п + Ах ,

где неизвестный дискретный параметр А принимает значение 0 или 1. Таким образом, задача сводится к тому, чтобы по измеренной величине у дать оценку этого параметра А*, оптимальную с точки зрения критерия минимума среднего риска или эквивалентного ему весового критерия.

Полагаем, что величины х, у и п за время наблюдения не меняются. Ожи­даемое значение сигнала х точно известно. Закон распределения случайной ве­личины п также известен (будем полагать его нормальным). На рис. 2.1 изо­бражены графики плотностей вероятности случайной величины у при условиях отсутствия сигнала А=А0 =0 и его наличия A=A1=1:

,

.

Индексы «П» и «СП» указывают на наличие одной помехи или наличии сигнала с поме­хой. Кривая РСП (у) сдвинута по отношению к кривой РП (у) на постоянную величину х.

Рис. 2.1. Условные плотности веро­ятности РП (у) и РСП (у) и график решающей функции А*(у)

Любое закономерное решение задачи обнаружения может быть описано решающей функцией А* = А*(у), которая в зависимости от реализации у принимает одно из двух значений: 0 или 1. Из графика решающей функции следует, что для y0<y<y1 принимается решение о наличии сигнала. Условные вероятности D и F имеют смысл вероятностей попадания случайной величины у в интервал при условии «сигнал + помеха» или «помеха» и соответствуют заштри­хованным областям на рисунке. Для произвольной решающей функции выражения для D и F можно запи­сать в виде интегралов в бесконечных пределах

(8)

Выражение D- l0F, соответствующее весовому критерию, может быть представлено следующим образом

(9)

где (10)

Согласно весовому критерию оптимальной является такая система обна­ружения, которая обеспечивает максимум интеграла (9). Чтобы выполнить это условие, достаточно добиться для каждого у наибольшего значения подынте­грального выражения за счет выбора решающей функции А*(у). Эта функция

принимает только два значения: 0 или 1, так что подынтегральное выражение либо обращается в 0, либо умножается на 1. Поэтому полагаем:

  1. А*(у)=1, если подынтегральное выражение положительное;

  2. А*(у)=0 в противном случае.

Поскольку плотность вероятности РП (у) не может принимать отрица­тельных значений, то оптимальное правило решения задачи обнаружения мо­жет быть записано в виде

(11)

Величина называется отношением правдоподобия. Оно характеризует, какую из гипотез следует считать правдоподобной. Отно­шение правдоподобия не может выражаться отрицательным числом. Решение о наличии сигнала принимается, если отношение правдоподобия превышает по­роговую величину l0, в противном случае принимается решение об отсутствии сигнала.

В случае, если помеха описывается центральным гауссовым распределе­нием со стандартным отклонением n0 и дисперсией , отношение правдоподо­бия будет равно

(12)

Зависимость l(y) для х > 0 изображена на рис. 2.2.

При х>0

Величина у0 называется порогом. При заданном уровне помех условная вероятность ложной тревоги F зависит только от величины у0:

, (13)

где - интеграл вероятности.

Таким образом, величину порога можно выбирать непосредственно по заданному уровню вероятности ложной тревоги, что соответствует критерию Неймана-Пирсона.

Рис. 2.2. Зависимость отно- Рис. 2.3. Условие плотности веро- шения правдоподобия от ре- ятности Рп (у), РСП (у) и график ре­ зультатов наблюдения шающей функции А*опт (у)

Условная вероятность правильного обнаружения определится следую-

щим образом:

(14)

При заданном уровне помех n0 величина D зависит не только от порога у0, но и от величины ожидаемого сигнала (рис. 2.4). Зависимость D(x) может быть построена качественно из анализа площади под кривой РСП (у) на рис. 2.3 и количественно в соответствии с выражением (14). Чем выше уровень порога у0

и меньше условная вероятность ложной тревоги F, тем больше кривая D(x)

сдвигается вправо.

При этом для обеспечения той же вероят­ности D требуется больший уровень полезного сигнала. Кривые, изображенные на рис. 2.4 на­зываются кривыми обнаружения.

Рис. 2.4. Кривые обнаружения