- •Глава I Пространственно-временная обработка радиолокационной информации
- •1.2. Пространственно-временная обработка
- •1.3. Пространственно-временная обработка радиолокационной информации
- •Глава II Первичная обработка радиолокационной информации
- •2.1. Обнаружение радиолокационных сигналов
- •2.1.3. Оптимальное обнаружение полностью известного сигнала
- •2.1.6. Принципы фильтровой и корреляционно—фильтровой обработки сигналов
- •2.1.7. Принципы оптимальной обработки некогерентных сигналов
- •2.1.8. Принципы обработки широкополосных сигналов
- •2.1.9. Ранговые обнаружители
- •2.1.10. Стабилизация уровня ложных тревог
- •2.2. Измерение параметров радиолокационных сигналов
- •2.2. 6. Методы измерения угловых координат
- •2.2.7. Многоканальные (моноимпулъсные) методы измерения угловых координат
- •2.2.8. Методы измерения скорости
- •2.2.9. Методы определения местоположения объектов
- •2.3.4. Разрешаемый объем
- •2.4. Распознавание воздушных объектов
- •2.5. Обработка сигналов в условиях воздействия пассивных помех и отражений от «местных предметов».
- •2.5.3. Когерентность сигналов
- •2.5.5. Радиолокаторы с внешней когерентностью
- •2.5.7. Селекция сигналов движущихся целей
- •2.5.8. Особенности систем сдц
- •2.5.8.1. Понятие слепого направления.
- •2.5.8.2, «Слепые» фазы.
- •2.5.9. Подавитель на промежуточной частоте
- •2.5.10. Череспериодное вычитание
- •2.5.11. «Слепые» скорости воздушных объектов
- •2.5.12. Применение систем сдц для компенсации сигналов
- •2.5.13. Цифровая система селекции движущихся целей
- •2,5.14. Основные характеристики систем сдц
- •2.5.15. Некоторые методы скоростной селекции
- •2.6. Обработка сигналов в условиях воздействия импульсных помех
- •2.6.1. Обработка сигналов в условиях воздействия несинхронных импульсных помех
- •2.6.2. Обработка сигнала на фоне шума и сигнальных импульсных помех
- •2.6.2.1. Понятие о динамическом диапазоне сигналов и помех и необходимости их нормирования
- •2.6.2.2. Нормирование уровня длинных импульсных помех с помощью схемы шоу
- •2.6.2.3. Нормирование уровня длинных импульсных помех с помощью схемы рос
- •2.6.2.4. Нормирование уровня коротких и длинных помех с помощью схемы шоу-рос
- •2.7. Системы подавления сигналов боковых лепестков диаграмм направленности антенн
- •2.7.1. Классификация систем подавления сигналов боковых лепестков
- •2.8. Активные маскирующие помехи и принципы защиты от них
- •2.8.2. Искусственные маскирующие активные помехи, особенности воздействия и способы создания
- •3.3, Алгоритм вторичной обработки
- •Глава IV третичная обработка информации
- •4.1. Принципы, способы и классификация третичной обработки радиолокационной информации
- •5.3. Кодирование запросных и ответных сигналов
- •5.3.1. Методы кодирования запросных и ответных сигналов
- •5.3.2. Структура запросных сигналов
- •5.3.3. Структура ответных сигналов
- •5.3.3.1. Ответный сигнал режима увд
- •6.4.3.2 Ответный сигнал режима rbs
- •5.4. Дешифрация ответной информации
- •5.4.1. Дешифрация сигналов в режиме увд
- •5.4.2. Дешифратор режима международного диапазона
- •5.5. Дискретно-адресная система вторичной радиолокации
- •5.6.. Моноимпульсный метод измерения
- •Содержание
- •Глава I Пространственно - временная обработка радиолокационной информации
- •Глава II Первичная обработка радиолокационной информации
- •Глава III Вторичная обработка радиолокационной информации
- •Глава IV Третичная обработка информации
- •Глава V Обработка сигналов средств вторичной радиолокации
5.3.2. Структура запросных сигналов
Кодирование запросных сигналов осуществляется с целью уменьшения вероятности срабатывания ответчика от случайных сигналов, а также для получения определенного вида информации по каналу ответа.
В существующих системах вторичной радиолокации применяются два формата стандарта кодирования (отечественный и международный). Передача кодированных сигналов по нормам ICAO производится только на несущих частотах 1030 МГц (запрос) и 1090 МГц (ответ). Отечественный стандарт устанавливает частоты: 837,5МГц (запрос) и 740МГц (ответ). Кодирование запросных сигналов в обоих форматах производиться импульсно-временным кодами.
Запросный код состоит из двух импульсов, обозначаемых Р1 и Р3 с кодовым интервалом τзк между их фронтами. Кодовые интервалы и вид запрашиваемой информации представлены в табл. 5.1.
Таблица 5.1
Шифр кода |
Интервал Т, мкс |
Информационное содержание |
|
|
сигналов от ответчиков |
Код RBS |
|
|
А |
8 |
Опознавание ВС (бортовой номер) |
С |
21 |
Высота полсти |
D |
25 |
Резерв |
Код УВД |
|
|
ЗК1 |
9,4 |
Бортовой номер ВС |
ЗК2 |
14 |
Высота полета и запас топлива |
ЗКЗ |
23 |
Вектор путевой скорости |
ЗК4 |
19 |
Координаты ВС |
Сигналы запроса режима RBS имеют вертикальную поляризацию, режима УВД - горизонтальную. Для подавления сигналов боковых лепестков в трехимпульсной системе подавления по каналу запроса между импульсами Р1 и Р3 излучается импульс Р2 следующий через 2±0,15 мкс после импульса Р1. Длительность импульсов запросных кодов и импульса подавления составляет 0,8 ±0,1 мкс.
5.3.3. Структура ответных сигналов
5.3.3.1. Ответный сигнал режима увд
Ответный сигнал самолетного ответчика включает в себя: координатный, ключевой и информационный сигналы. Структура ответного сигнала изображена на рис. 5.6.
Координатный код состоит из двух импульсов, обозначенных РК1 и РК3 .Временной интервал между ними зависит от кода запроса и определяется в соответствии с табл. 5.2.
Совместно с импульсами РК1 и РК3 может передаваться сигнал «бедствие», который должен отстоять от импульса РК3 на 6 мкс.
После координатного кода следует ключевой код, состоящий из трех импульсов РКИ1..3 Интервал τ к_кл, между импульсом РК3 координатного хода и импульсом РКИ1 должен соответствовать следующим значениям: при передаче
бортового номера - 8,5 мкс; высоты полети и запаса топлива 14 мкс; вектора
скорости - 10 мкс. Ключевой код передается в двоичном системе счисления
тремя разрядами методом активной паузы. И каждом разряде дно починим, временной интервал между которыми 4 мкс. Ключевой код 1 К), изображенный на рис. 5.6, соответствует передаче бортового номера.
Для передачи информационного сигнала используется двоичная система счисления. Информация передается 40 разрядами методом активной паузы (80 позиций). Временной интервал между соседними позициями в разряде - 4 мкс. Для повышения достоверности информации на земле, она передается дважды: с 1-го по 20-й разряд и с 21-го по 40-й разряд. Временной интервал между последней позицией ключевого кода и первой позицией информационных импульсов составляет 4 мкс.
На рис. 5.7. изображена полная структура ответного сигнала при запросе бортового номера. Все разряды ответного кода разбиваются на декады (по четыре разряда в каждой), причем в первой декаде передаются единицы, во второй - десятки, в третьей - сотни, в четвертой - тысячи, в пятой - десятки тысяч. Такой код называется двоично-десятичным пятидекадным четырехразрядным. Он позволяет передавать номера от 00000 до 99999. На рис. 5.7 изображена структура ответного сигнала при передаче бортового номера 12345. Формирование кода сигнала бортового номера поясняется таблицей 5.3.
При запросе кодом ЗК2 ответчик передает информацию о высоте полета и остатке топлива. Информация о высоте передается и 1...14 разрядах. В 15-м разряде указывается признак высоты: «1» абсолютам; « - относительная. В 16-м разряде значение «1» соответствует сигналу БЕДСТВИЕ (этот же сигнал указывается импульсом РК2 в координатном коде). Данные о запасе топлива в процентах от полной вместимости топливных баков даются и 17...20 разрядах информационного кода. На рис. 5.8. изображена структура ответного сигнала при запросе текущей информации: абсолютная высота 1270 м и остаток топлива 30%. Формирование ответного сигнала поясняется таблицей 5.4, 5.5.
В ответном сигнале, возможно, передавать высоту полёта до 30000м с градациями через 10м. Кроме того, возможна передача отрицательных значений абсолютной барометрической высоты от 0 до 300м. При передаче отрицательны значений высоты 8, 13, 14 должны иметь символ «0», а разряды 9, 10, 11, 12 – символ «1». Значение абсолютной высоты передается группой разрядов 1…7.
При запросе кодом ЗКЗ ответчик формирует информационное слово,
обеспечивающее передачу аргумента вектора скорости в пределах от 0 до 360
градусов с градацией 1 градус и значения модуля вектора скорости в интервале от 0 до 3500 км/ч с градацией 10 км/ч. Данные об аргументе и модуле вектора скорости передаются с использованием трех десятичных цифр в соответствии с таблицей 5.6, 5.7.
