- •Глава I Пространственно-временная обработка радиолокационной информации
- •1.2. Пространственно-временная обработка
- •1.3. Пространственно-временная обработка радиолокационной информации
- •Глава II Первичная обработка радиолокационной информации
- •2.1. Обнаружение радиолокационных сигналов
- •2.1.3. Оптимальное обнаружение полностью известного сигнала
- •2.1.6. Принципы фильтровой и корреляционно—фильтровой обработки сигналов
- •2.1.7. Принципы оптимальной обработки некогерентных сигналов
- •2.1.8. Принципы обработки широкополосных сигналов
- •2.1.9. Ранговые обнаружители
- •2.1.10. Стабилизация уровня ложных тревог
- •2.2. Измерение параметров радиолокационных сигналов
- •2.2. 6. Методы измерения угловых координат
- •2.2.7. Многоканальные (моноимпулъсные) методы измерения угловых координат
- •2.2.8. Методы измерения скорости
- •2.2.9. Методы определения местоположения объектов
- •2.3.4. Разрешаемый объем
- •2.4. Распознавание воздушных объектов
- •2.5. Обработка сигналов в условиях воздействия пассивных помех и отражений от «местных предметов».
- •2.5.3. Когерентность сигналов
- •2.5.5. Радиолокаторы с внешней когерентностью
- •2.5.7. Селекция сигналов движущихся целей
- •2.5.8. Особенности систем сдц
- •2.5.8.1. Понятие слепого направления.
- •2.5.8.2, «Слепые» фазы.
- •2.5.9. Подавитель на промежуточной частоте
- •2.5.10. Череспериодное вычитание
- •2.5.11. «Слепые» скорости воздушных объектов
- •2.5.12. Применение систем сдц для компенсации сигналов
- •2.5.13. Цифровая система селекции движущихся целей
- •2,5.14. Основные характеристики систем сдц
- •2.5.15. Некоторые методы скоростной селекции
- •2.6. Обработка сигналов в условиях воздействия импульсных помех
- •2.6.1. Обработка сигналов в условиях воздействия несинхронных импульсных помех
- •2.6.2. Обработка сигнала на фоне шума и сигнальных импульсных помех
- •2.6.2.1. Понятие о динамическом диапазоне сигналов и помех и необходимости их нормирования
- •2.6.2.2. Нормирование уровня длинных импульсных помех с помощью схемы шоу
- •2.6.2.3. Нормирование уровня длинных импульсных помех с помощью схемы рос
- •2.6.2.4. Нормирование уровня коротких и длинных помех с помощью схемы шоу-рос
- •2.7. Системы подавления сигналов боковых лепестков диаграмм направленности антенн
- •2.7.1. Классификация систем подавления сигналов боковых лепестков
- •2.8. Активные маскирующие помехи и принципы защиты от них
- •2.8.2. Искусственные маскирующие активные помехи, особенности воздействия и способы создания
- •3.3, Алгоритм вторичной обработки
- •Глава IV третичная обработка информации
- •4.1. Принципы, способы и классификация третичной обработки радиолокационной информации
- •5.3. Кодирование запросных и ответных сигналов
- •5.3.1. Методы кодирования запросных и ответных сигналов
- •5.3.2. Структура запросных сигналов
- •5.3.3. Структура ответных сигналов
- •5.3.3.1. Ответный сигнал режима увд
- •6.4.3.2 Ответный сигнал режима rbs
- •5.4. Дешифрация ответной информации
- •5.4.1. Дешифрация сигналов в режиме увд
- •5.4.2. Дешифратор режима международного диапазона
- •5.5. Дискретно-адресная система вторичной радиолокации
- •5.6.. Моноимпульсный метод измерения
- •Содержание
- •Глава I Пространственно - временная обработка радиолокационной информации
- •Глава II Первичная обработка радиолокационной информации
- •Глава III Вторичная обработка радиолокационной информации
- •Глава IV Третичная обработка информации
- •Глава V Обработка сигналов средств вторичной радиолокации
Глава IV третичная обработка информации
4.1. Принципы, способы и классификация третичной обработки радиолокационной информации
Под третичной обработкой понимается процесс обработки сигналов или объединения первичной радиолокационной информации по пространству с целью улучшения характеристик радиолокационного наблюдения:
характеристик обнаружения;
характеристик распознавания;
точность характеристик измерения координат и параметров движения воздушного объекта.
При третичной обработке решаются следующие задачи: отождествление отметок от одного воздушного судна, полученных различными источниками информации; формирование измерений по данным от нескольких источников; построение траектории по объединенным данным.
Основой объединения сигналов является наличие рассеянного или излученного воздушным судном сигнала в пространстве, намного превосходящем по размерам ограниченное пространство однопозиционного радиолокационного наблюдения.
Если сигналы или первичную радиолокационную информацию, полученные в отдельных пунктах наблюдения, передать и сосредоточить в некотором центре обработки, то это объединение позволит использовать в интересах улучшения характеристик радиолокационного наблюдения не только дополнительную энергетику, но и корреляционные связи принятых сигналов, а также пространственное подобие первичной радиолокационной информации об одном объекте от разных источников, обусловленное фактическим наличием воздушного объекта в определенной точке пространства.
Энергетика принятого сигнала, которую можно использовать, пропорциональна суммарному раскрыву разреженной апертуры.
Корреляционные связи принятых в разных точках пространства сигналов определяются, во-первых, расстоянием между этими точками, а во-вторых, интервалом пространственной корреляции рассеянного или излученного целью сигнала. Последний определяется длиной волны λ, размером воздушного объекта (или раскрывом антенны излучающей системы) L и расстоянием от объекта до зоны анализа R:
Если
расстояние между пунктами приема
меньше интервала пространственной
корреляции сигнала
,
то
принятые в этих пунктах сигналы являются
коррелированными, причем коэффициент
их корреляции можно считать равным
В противном случае принятые сигналы следует считать некоррелированными. Корреляционные связи принятых сигналов могут быть использованы как для взаимной когерентной компенсации этих сигналов, так и для их когерентного сложения.
Пространственное подобие первичной РЛИ об одной цели от разных источников (от разных пунктов приема и анализа), обусловленное фактическим наличием цели в определенной точке пространства, может быть использовано для отождествления РЛИ, полученной от разных источников, т. е. для закрепления сведений, полученных от разных источников, за одной определенной целью.
Техническим средством третичной обработки является многопозиционная радиолокационная система (МП РЛС). Под МП РЛС понимается радиолокационная система, которая включает несколько разнесенных в пространстве передающих, приемных или приемопередающих позиций и в которой производится совместная обработка получаемых с помощью этих позиций сигналов или информации о наблюдаемых объектах (целях). Центр или пункт совместной обработки может быть расположен на одной из позиций МП РЛС и должен быть связан линиями связи со всеми позициями. Именно благодаря совместной обработке сигналов или информации достигаются основные преимущества МП РЛС.
Главным и наиболее существенным, с точки зрения структуры и характеристик МП РЛС, классификационным признаком когерентной обработки, определяющим фактически способ пространственного объединения сигналов и первичной РЛИ, является степень пространственной когерентности МП РЛС. Под пространственной когерентностью МП РЛС понимается способность использовать информацию, содержащуюся во взаимных фазовых соотношениях сигналов в разнесенных позициях. Следует различать пространственную когерентность МП РЛС и пространственную когерентность сигналов на входах приемных позиций МП РЛС. Последняя, как известно, зависит от размеров баз между позициями, длины волны, размеров цели, а также неоднородностей среды распространения, в то время как пространственная когерентность МП РЛС характеризует, no-существу, технические возможности аппаратуры. В связи с этим можно выделить три способа пространственного объединения сигналов и первичной РЛИ:
а) способ пространственно-когерентного объединения сигналов с привязкой позиций по времени, частоте и фазе принятых СВЧ-колебаний;
б) способ частичного или неполного пространственно-когерентного объединения сигналов с привязкой позиций по времени и частоте;
в) способ пространственно-некогерентного объединения сигналов и первичной РЛИ с привязкой позиций только по времени.
В пространственно-когерентных МП РЛС можно в принципе наиболее полно использовать информацию, содержащуюся в пространственной структуре электромагнитного поля, рассеянного или излученного целью, в том числе и в соотношении начальных фаз сигналов на входах разнесенных позиций В таких МП РЛС взаимные фазовые сдвиги сигналов в трактах разнесенных позиций и линиях связи известны и сохраняются практически неизменными на интервале времени, намного превышающем время наблюдения сигнала (например, в течение нескольких часов). В МП РЛС с продолжительной пространственной когерентностью необходима взаимная привязка разнесенных позиций не только по времени и частоте (опорным частотам передатчиков и гетеродинов приемников), но и по начальным высоко частотным фазам. С помощью какого-либо опорного сигнала (от радиоастрономического источника, «точечного» отражателя и др.) взаимные фазовые сдвиги могут периодически измеряться и корректироваться (юстироваться) или просто учитываться при обработке. Совокупность разнесенных позиций пространственно-когерентной МП РЛС можно рассматривать как единую разреженную антенную решетку, поэтому для получения приемлемой «диаграммы пространственной избирательности» требуется много позиции.
В пространственно-когерентных МП РЛС с частичной, неполной или кратковременной пространственной когерентностью пространственная когерентность сохраняется на интервале времени порядка времени наблюдения рассеянного или излученного целью сигнала. Обычно это время не превышает долей секунды. При совместной обработке сигналов может использоваться вся информация, содержащаяся в комплексных огибающих сигналов разных позиций, в том числе, в изменениях фазовых соотношений на интервале наблюдения для измерения тангенциальной скорости цели или источника активной помехи разностно-доплеровским методом. Однако информация, содержащаяся в соотношении начальных фаз сигналов, не используется. В таких системах необходима взаимная привязка разнесенных позиции только по времени и частоте. Число разнесенных позиций в таких МП РЛС может быть значительно меньше, чем в пространственно-когерентных МП РЛС, и не требуется взаимная фазовая привязка позиций.
В пространственно-некогерентных МП РЛС фазовая информация полностью исключается в результате детектирования сигналов до их объединения. В связи с этим не требуется не только фазовая, но, как правило, и частотная привязка позиций. Обычно необходима лишь взаимная временная привязка (синхронизация). Пространственно-некогерентные МП РЛС проще, чем МП РЛС с кратковременной, а тем более с длительной пространственной когерентностью. Однако исключение фазовой информации приводит к энергетическим и особенно к информационным потерям. В частности, невозможно измерение тангенциальной скорости источников помех разностно-доплеровским методом.
Пространственная некогерентность МП РЛС не исключает временную когерентность каждой позиции до совместной обработки. В МП РЛС, состоящей из нескольких приемопередающих позиций с временной когерентностью, можно измерять доплеровское смещение частоты эхо-сигналов, а, следовательно, и радиальную скорость цели относительно каждой позиции.
В пространственно-некогерентных МП РЛС объединение сигналов или первичной радиолокационной информации может осуществляться на следующих уровнях:
а) объединение видеосигналов после детектирования в каждой позиции;
б) объединение обнаруженных и проклассифицированных отметок (единичных решений) и единичных замеров; при этом вся первичная обработка смесей сигналов, внешних помех и собственных шумов, включая сравнение с порогом, измерение параметров обнаруженных сигналов и их классификацию, проводится в каждой позиции, а на совместную обработку поступает только информация, которая признана «полезной»;
в) объединение траекторий (трасс); при объединении траекторий в каждой позиции проводится не только первичная, но и вторичная обработка информации, которая завершается построением траекторий целей; параметры траекторий сопровождаемых целей передаются в центр обработки для совместной обработки, в результате которой дополнительно отсеиваются «ложные» и уточняются «истинные» траектории.
Самолетный ответчик состоит из антенно-фидерного устройства, распределительного фильтра (РФ), приемника и дешифратора запросных сигналов, шифратора ответных сигналов и передатчика. Запросные сигналы с антенны ответчика через разделительный фильтр поступают в приемник, где преобразуются, усиливаются по промежуточной частоте и детектируются. Па выходе приемника ответчика образуется пачка парных импульсов запроса (рис. 6.3). Временные кодовые интервалы между парными импульсами (τзк1, τзк2) определяют содержание информации, которую должен передать ответчик.
Запросные сигналы поступают на вход дешифратора, в котором производится декодирование запрашиваемой информации. В простейшем случае дешифратор представляет собой набор линий задержек со стандартными временными интервалами задержки и логических схем «И». В результате совпадения двух запросных импульсов в дешифраторе образуется управляющий импульс для шифратора. Шифратор формирует импульсы координатного и соответствующего информационного кода (бортового номера или высоты и др.). На информационные входы шифратора поступает информация от соответствующих датчиков. Шифратор формирует пачку ответных видеоимпульсов, в которой закодирована запрашиваемая информация. Эти импульсы поступают на вход передающего устройства, состоящего из подмодулятора, модулятора и генератора свч.
Пачка видеоимпульсов преобразуется передающим устройством в пачку радиоимпульсов, которые через развязывающий фильтр поступают в антенну и излучаются в пространство. Несущая частота ответных сигналов (fo= 740 или 1090 МГц) отличается от несущей частоты запросных сигналов. Развязывающий фильтр выполняет функции антенного переключателя и выполняется обычно на полосковых линиях.
Ответные сигналы принимаются антенной и приемником вторичного радиолокатора и декодируются. В ответном сигнале имеются два координатных (опорных) импульса. По времени запаздывания этих импульсов относительно запросных с учетом времени задержки на кодирование и декодирование, определяется дальность до ответчика. Угловая координата ответчика определяется методом пеленгации по максимуму (в моноимпульсных системах метод иной и будет изложен ниже).
Дешифратор вторичного радиолокатора выделяет дополнительную ин-
формацию, переданную ответчиком (бортовой номер, высота и др.), которая
отображается на индикаторных устройствах.
В обобщенной структурной схеме изображены лишь основные устройства, поясняющие основной принцип действия системы вторичной радиолокации. Для обеспечения надежной работы системы как наземное, так и бортовое оборудование содержит дополнительные устройства, например, устройства, устраняющие влияние боковых лепестков диаграммы направленности антенны запросчика.
