Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теоретические основы радиолокации 1.doc
Скачиваний:
34
Добавлен:
01.05.2025
Размер:
33.82 Mб
Скачать

Глава IV третичная обработка информации

4.1. Принципы, способы и классификация третичной обработки радиолокационной информации

Под третичной обработкой понимается процесс обработки сигналов или объединения первичной радиолокационной информации по пространству с це­лью улучшения характеристик радиолокационного наблюдения:

характеристик обнаружения;

характеристик распознавания;

точность характеристик измерения координат и параметров движения воздушного объекта.

При третичной обработке решаются следующие задачи: отождествление отметок от одного воздушного судна, полученных различными источниками информации; формирование измерений по данным от нескольких источников; построение траектории по объединенным данным.

Основой объединения сигналов является наличие рассеянного или излу­ченного воздушным судном сигнала в пространстве, намного превосходящем по размерам ограниченное пространство однопозиционного радиолокационно­го наблюдения.

Если сигналы или первичную радиолокационную информацию, получен­ные в отдельных пунктах наблюдения, передать и сосредоточить в некотором центре обработки, то это объединение позволит использовать в интересах улучшения характеристик радиолокационного наблюдения не только дополни­тельную энергетику, но и корреляционные связи принятых сигналов, а также пространственное подобие первичной радиолокационной информации об од­ном объекте от разных источников, обусловленное фактическим наличием воз­душного объекта в определенной точке пространства.

Энергетика принятого сигнала, которую можно использовать, пропор­циональна суммарному раскрыву разреженной апертуры.

Корреляционные связи принятых в разных точках пространства сигналов определяются, во-первых, расстоянием между этими точками, а во-вторых, ин­тервалом пространственной корреляции рассеянного или излученного целью сигнала. Последний определяется длиной волны λ, размером воздушного объ­екта (или раскрывом антенны излучающей системы) L и расстоянием от объек­та до зоны анализа R:

Если расстояние между пунктами приема меньше интервала простран­ственной корреляции сигнала , то принятые в этих пунктах сигналы являют­ся коррелированными, причем коэффициент их корреляции можно считать рав­ным

В противном случае принятые сигналы следует считать некоррелирован­ными. Корреляционные связи принятых сигналов могут быть использованы как для взаимной когерентной компенсации этих сигналов, так и для их когерент­ного сложения.

Пространственное подобие первичной РЛИ об одной цели от разных ис­точников (от разных пунктов приема и анализа), обусловленное фактическим наличием цели в определенной точке пространства, может быть использовано для отождествления РЛИ, полученной от разных источников, т. е. для закреп­ления сведений, полученных от разных источников, за одной определенной це­лью.

Техническим средством третичной обработки является многопозицион­ная радиолокационная система (МП РЛС). Под МП РЛС понимается радио­локационная система, которая включает несколько разнесенных в пространстве передающих, приемных или приемопередающих позиций и в которой произво­дится совместная обработка получаемых с помощью этих позиций сигналов или информации о наблюдаемых объектах (целях). Центр или пункт совместной обработки может быть расположен на одной из позиций МП РЛС и должен быть связан линиями связи со всеми позициями. Именно благодаря совместной обработке сигналов или информации достигаются основные преимущества МП РЛС.

Главным и наиболее существенным, с точки зрения структуры и характе­ристик МП РЛС, классификационным признаком когерентной обработки, опре­деляющим фактически способ пространственного объединения сигналов и пер­вичной РЛИ, является степень пространственной когерентности МП РЛС. Под пространственной когерентностью МП РЛС понимается способность ис­пользовать информацию, содержащуюся во взаимных фазовых соотношениях сигналов в разнесенных позициях. Следует различать пространственную коге­рентность МП РЛС и пространственную когерентность сигналов на входах приемных позиций МП РЛС. Последняя, как известно, зависит от размеров баз между позициями, длины волны, размеров цели, а также неоднородностей сре­ды распространения, в то время как пространственная когерентность МП РЛС характеризует, no-существу, технические возможности аппаратуры. В связи с этим можно выделить три способа пространственного объединения сигналов и первичной РЛИ:

а) способ пространственно-когерентного объединения сигналов с привяз­кой позиций по времени, частоте и фазе принятых СВЧ-колебаний;

б) способ частичного или неполного пространственно-когерентного объ­единения сигналов с привязкой позиций по времени и частоте;

в) способ пространственно-некогерентного объединения сигналов и пер­вичной РЛИ с привязкой позиций только по времени.

В пространственно-когерентных МП РЛС можно в принципе наиболее полно использовать информацию, содержащуюся в пространственной структу­ре электромагнитного поля, рассеянного или излученного целью, в том числе и в соотношении начальных фаз сигналов на входах разнесенных позиций В та­ких МП РЛС взаимные фазовые сдвиги сигналов в трактах разнесенных пози­ций и линиях связи известны и сохраняются практически неизменными на интервале времени, намного превышающем время наблюдения сигнала (напри­мер, в течение нескольких часов). В МП РЛС с продолжительной пространст­венной когерентностью необходима взаимная привязка разнесенных позиций не только по времени и частоте (опорным частотам передатчиков и гетеродинов приемников), но и по начальным высоко частотным фазам. С помощью какого-либо опорного сигнала (от радиоастрономического источника, «точечного» от­ражателя и др.) взаимные фазовые сдвиги могут периодически измеряться и корректироваться (юстироваться) или просто учитываться при обработке. Со­вокупность разнесенных позиций пространственно-когерентной МП РЛС мож­но рассматривать как единую разреженную антенную решетку, поэтому для получения приемлемой «диаграммы пространственной избирательности» тре­буется много позиции.

В пространственно-когерентных МП РЛС с частичной, неполной или кратковременной пространственной когерентностью пространственная ко­герентность сохраняется на интервале времени порядка времени наблюдения рассеянного или излученного целью сигнала. Обычно это время не превышает долей секунды. При совместной обработке сигналов может использоваться вся информация, содержащаяся в комплексных огибающих сигналов разных пози­ций, в том числе, в изменениях фазовых соотношений на интервале наблюде­ния для измерения тангенциальной скорости цели или источника активной по­мехи разностно-доплеровским методом. Однако информация, содержащаяся в соотношении начальных фаз сигналов, не используется. В таких системах не­обходима взаимная привязка разнесенных позиции только по времени и часто­те. Число разнесенных позиций в таких МП РЛС может быть значительно меньше, чем в пространственно-когерентных МП РЛС, и не требуется взаимная фазовая привязка позиций.

В пространственно-некогерентных МП РЛС фазовая информация пол­ностью исключается в результате детектирования сигналов до их объединения. В связи с этим не требуется не только фазовая, но, как правило, и частотная привязка позиций. Обычно необходима лишь взаимная временная привязка (синхронизация). Пространственно-некогерентные МП РЛС проще, чем МП РЛС с кратковременной, а тем более с длительной пространственной когерент­ностью. Однако исключение фазовой информации приводит к энергетическим и особенно к информационным потерям. В частности, невозможно измерение тангенциальной скорости источников помех разностно-доплеровским методом.

Пространственная некогерентность МП РЛС не исключает временную когерентность каждой позиции до совместной обработки. В МП РЛС, состоя­щей из нескольких приемопередающих позиций с временной когерентностью, можно измерять доплеровское смещение частоты эхо-сигналов, а, следователь­но, и радиальную скорость цели относительно каждой позиции.

В пространственно-некогерентных МП РЛС объединение сигналов или первичной радиолокационной информации может осуществляться на следую­щих уровнях:

а) объединение видеосигналов после детектирования в каждой позиции;

б) объединение обнаруженных и проклассифицированных отметок (еди­ничных решений) и единичных замеров; при этом вся первичная обработка смесей сигналов, внешних помех и собственных шумов, включая сравнение с порогом, измерение параметров обнаруженных сигналов и их классификацию, проводится в каждой позиции, а на совместную обработку поступает только информация, которая признана «полезной»;

в) объединение траекторий (трасс); при объединении траекторий в каж­дой позиции проводится не только первичная, но и вторичная обработка ин­формации, которая завершается построением траекторий целей; параметры тра­екторий сопровождаемых целей передаются в центр обработки для совместной обработки, в результате которой дополнительно отсеиваются «ложные» и уточняются «истинные» траектории.

Самолетный ответчик состоит из антенно-фидерного устройства, распре­делительного фильтра (РФ), приемника и дешифратора запросных сигналов, шифратора ответных сигналов и передатчика. Запросные сигналы с антенны ответчика через разделительный фильтр поступают в приемник, где преобра­зуются, усиливаются по промежуточной частоте и детектируются. Па выходе приемника ответчика образуется пачка парных импульсов запроса (рис. 6.3). Временные кодовые интервалы между парными импульсами (τзк1, τзк2) опреде­ляют содержание информации, которую должен передать ответчик.

Запросные сигналы поступают на вход дешифратора, в котором произво­дится декодирование запрашиваемой информации. В простейшем случае де­шифратор представляет собой набор линий задержек со стандартными времен­ными интервалами задержки и логических схем «И». В результате совпадения двух запросных импульсов в дешифраторе образуется управляющий импульс для шифратора. Шифратор формирует импульсы координатного и соответст­вующего информационного кода (бортового номера или высоты и др.). На ин­формационные входы шифратора поступает информация от соответствующих датчиков. Шифратор формирует пачку ответных видеоимпульсов, в которой за­кодирована запрашиваемая информация. Эти импульсы поступают на вход пе­редающего устройства, состоящего из подмодулятора, модулятора и генератора свч.

Пачка видеоимпульсов преобразуется передающим устройством в пачку радиоимпульсов, которые через развязывающий фильтр поступают в антенну и излучаются в пространство. Несущая частота ответных сигналов (fo= 740 или 1090 МГц) отличается от несущей частоты запросных сигналов. Развязываю­щий фильтр выполняет функции антенного переключателя и выполняется обычно на полосковых линиях.

Ответные сигналы принимаются антенной и приемником вторичного ра­диолокатора и декодируются. В ответном сигнале имеются два координатных (опорных) импульса. По времени запаздывания этих импульсов относительно запросных с учетом времени задержки на кодирование и декодирование, определяется дальность до ответчика. Угловая координата ответчика определяется методом пеленгации по максимуму (в моноимпульсных системах метод иной и будет изложен ниже).

Дешифратор вторичного радиолокатора выделяет дополнительную ин-

формацию, переданную ответчиком (бортовой номер, высота и др.), которая

отображается на индикаторных устройствах.

В обобщенной структурной схеме изображены лишь основные устройст­ва, поясняющие основной принцип действия системы вторичной радиолокации. Для обеспечения надежной работы системы как наземное, так и бортовое обо­рудование содержит дополнительные устройства, например, устройства, устра­няющие влияние боковых лепестков диаграммы направленности антенны запросчика.