- •Глава I Пространственно-временная обработка радиолокационной информации
- •1.2. Пространственно-временная обработка
- •1.3. Пространственно-временная обработка радиолокационной информации
- •Глава II Первичная обработка радиолокационной информации
- •2.1. Обнаружение радиолокационных сигналов
- •2.1.3. Оптимальное обнаружение полностью известного сигнала
- •2.1.6. Принципы фильтровой и корреляционно—фильтровой обработки сигналов
- •2.1.7. Принципы оптимальной обработки некогерентных сигналов
- •2.1.8. Принципы обработки широкополосных сигналов
- •2.1.9. Ранговые обнаружители
- •2.1.10. Стабилизация уровня ложных тревог
- •2.2. Измерение параметров радиолокационных сигналов
- •2.2. 6. Методы измерения угловых координат
- •2.2.7. Многоканальные (моноимпулъсные) методы измерения угловых координат
- •2.2.8. Методы измерения скорости
- •2.2.9. Методы определения местоположения объектов
- •2.3.4. Разрешаемый объем
- •2.4. Распознавание воздушных объектов
- •2.5. Обработка сигналов в условиях воздействия пассивных помех и отражений от «местных предметов».
- •2.5.3. Когерентность сигналов
- •2.5.5. Радиолокаторы с внешней когерентностью
- •2.5.7. Селекция сигналов движущихся целей
- •2.5.8. Особенности систем сдц
- •2.5.8.1. Понятие слепого направления.
- •2.5.8.2, «Слепые» фазы.
- •2.5.9. Подавитель на промежуточной частоте
- •2.5.10. Череспериодное вычитание
- •2.5.11. «Слепые» скорости воздушных объектов
- •2.5.12. Применение систем сдц для компенсации сигналов
- •2.5.13. Цифровая система селекции движущихся целей
- •2,5.14. Основные характеристики систем сдц
- •2.5.15. Некоторые методы скоростной селекции
- •2.6. Обработка сигналов в условиях воздействия импульсных помех
- •2.6.1. Обработка сигналов в условиях воздействия несинхронных импульсных помех
- •2.6.2. Обработка сигнала на фоне шума и сигнальных импульсных помех
- •2.6.2.1. Понятие о динамическом диапазоне сигналов и помех и необходимости их нормирования
- •2.6.2.2. Нормирование уровня длинных импульсных помех с помощью схемы шоу
- •2.6.2.3. Нормирование уровня длинных импульсных помех с помощью схемы рос
- •2.6.2.4. Нормирование уровня коротких и длинных помех с помощью схемы шоу-рос
- •2.7. Системы подавления сигналов боковых лепестков диаграмм направленности антенн
- •2.7.1. Классификация систем подавления сигналов боковых лепестков
- •2.8. Активные маскирующие помехи и принципы защиты от них
- •2.8.2. Искусственные маскирующие активные помехи, особенности воздействия и способы создания
- •3.3, Алгоритм вторичной обработки
- •Глава IV третичная обработка информации
- •4.1. Принципы, способы и классификация третичной обработки радиолокационной информации
- •5.3. Кодирование запросных и ответных сигналов
- •5.3.1. Методы кодирования запросных и ответных сигналов
- •5.3.2. Структура запросных сигналов
- •5.3.3. Структура ответных сигналов
- •5.3.3.1. Ответный сигнал режима увд
- •6.4.3.2 Ответный сигнал режима rbs
- •5.4. Дешифрация ответной информации
- •5.4.1. Дешифрация сигналов в режиме увд
- •5.4.2. Дешифратор режима международного диапазона
- •5.5. Дискретно-адресная система вторичной радиолокации
- •5.6.. Моноимпульсный метод измерения
- •Содержание
- •Глава I Пространственно - временная обработка радиолокационной информации
- •Глава II Первичная обработка радиолокационной информации
- •Глава III Вторичная обработка радиолокационной информации
- •Глава IV Третичная обработка информации
- •Глава V Обработка сигналов средств вторичной радиолокации
2.8.2. Искусственные маскирующие активные помехи, особенности воздействия и способы создания
В качестве искусственных маскирующих активных помех может быть использовано излучение шумовых колебаний. Шумовые колебания могут преднамеренно создаваться как генераторами с независимым возбуждением, так и генераторами с самовозбуждением, что более экономично, например специальными магнетронами, работающими в шумящем режиме.
При достаточно большом динамическом диапазоне приемника шумовые колебания создают эффект, аналогичный резкому увеличению внутреннего шума, что затрудняет обнаружение и измерение параметров радиолокационного сигнала при больших дальностях до цели. Очень мощные искусственные активные помехи, как и взаимные, могут действовать в принципе и по побочным каналам приема.
Если динамический диапазон приемника недостаточен и имеет место амплитудное ограничение (особенно в последних каскадах УПЧ, после сужения полосы пропускания), отношение сигнал-помеха после ограничителя еще более ухудшается. Это поясняется на рис.2.173, где показано прохождение через ограничитель немодулированной синусоидальной помехи вместе с импульсом сигнала. Видно, что по мере увеличения интенсивности помехи может произойти полное подавление сигнала. Аналогичный эффект имеет место и в случае воздействия шумовой помехи при недостаточном динамическом диапазоне приемника. Поэтому воздействие маскирующей помехи при малом динамическом диапазоне приемника особенно опасно. Но даже и при очень большом динамическом диапазоне приемника воздействие помехи, эквивалентное увеличению внутреннего шума, может значительно ухудшить или полностью сорвать радиолокационное обнаружение или сопровождение.
Примерный вид зоны видимости в случае двух постановщиков помех показан на рис. 2.174. Наблюдается сокращение дальности действия по сравнению со случаем отсутствия помех, даже когда помеха действует по боковым лепесткам диаграммы направленности. Наибольшее сокращение дальности действия имеет место в направлении на постановщик помех. В окрестностях направления на постановщик помех могут создаваться секторы эффективного подавления. Степень уменьшения дальности в каждом случае так же, как и ширина сектора подавления, зависит от параметров радиолокатора.
Если аналогичным образом исследовать зависимость дальности от е, то можно убедиться, что не только уменьшается дальность действия, но и снижается потолок обнаружения и поднимается нижняя кромка зоны видимости.
Приведенное рассмотрение касалось РЛС с достаточно большим динамическим диапазоном приемного тракта, например с автоматической регулировкой усиления по уровню помехи. Если это не соблюдается, то наряду с потерей возможности обнаруживать цель на больших дальностях будет теряться возможность обнаружения цели и на малых дальностях, поскольку уровень помехи может превышать уровень ограничения в тракте приемника. Для случая, изображенного на рис. 2.174, при отсутствии автоматической регулировки усиления и недостаточном динамическом диапазоне приемника на индикаторе будет наблюдаться картина, показанная на рис. 2.175.
2.8.3. Возможные принципы защиты от маскирующих активных помех
Меры защиты от маскирующих активных помех могут быть достаточно эффективными только в том случае, если не происходит подавления сигнала за счет недостаточного динамического диапазона приемника. При этом может быть принят ряд мер, связанных, например, с использованием частотной, пространственной, поляризационной селекции и т. д.
Как видно из выражений (1) и (3), увеличению дальности действия в помехах будут содействовать все меры, увеличивающие левую и уменьшающие правую часть этих выражений. Так, например, увеличение энергии зондирующего сигнала позволяет увеличить дальность действия в помехах пропорционально Э1/4 в режиме внешнего прикрытия и Э1/2 — в режиме самоприкрытия. Увеличение коэффициента усиления передающей антенны в направлении на цель позволяет увеличить дальность действия в помехах также пропорционально Э1/4 в режиме внешнего прикрытия и Э1/2 в режиме самоприкрытия.
Уменьшение поляризационного коэффициента у в отдельных случаях может снизить воздействие помехи по сравнению с воздействием сигнала. Уменьшение коэффициента различимости v также способствует решению этой задачи.
