- •Глава I Пространственно-временная обработка радиолокационной информации
- •1.2. Пространственно-временная обработка
- •1.3. Пространственно-временная обработка радиолокационной информации
- •Глава II Первичная обработка радиолокационной информации
- •2.1. Обнаружение радиолокационных сигналов
- •2.1.3. Оптимальное обнаружение полностью известного сигнала
- •2.1.6. Принципы фильтровой и корреляционно—фильтровой обработки сигналов
- •2.1.7. Принципы оптимальной обработки некогерентных сигналов
- •2.1.8. Принципы обработки широкополосных сигналов
- •2.1.9. Ранговые обнаружители
- •2.1.10. Стабилизация уровня ложных тревог
- •2.2. Измерение параметров радиолокационных сигналов
- •2.2. 6. Методы измерения угловых координат
- •2.2.7. Многоканальные (моноимпулъсные) методы измерения угловых координат
- •2.2.8. Методы измерения скорости
- •2.2.9. Методы определения местоположения объектов
- •2.3.4. Разрешаемый объем
- •2.4. Распознавание воздушных объектов
- •2.5. Обработка сигналов в условиях воздействия пассивных помех и отражений от «местных предметов».
- •2.5.3. Когерентность сигналов
- •2.5.5. Радиолокаторы с внешней когерентностью
- •2.5.7. Селекция сигналов движущихся целей
- •2.5.8. Особенности систем сдц
- •2.5.8.1. Понятие слепого направления.
- •2.5.8.2, «Слепые» фазы.
- •2.5.9. Подавитель на промежуточной частоте
- •2.5.10. Череспериодное вычитание
- •2.5.11. «Слепые» скорости воздушных объектов
- •2.5.12. Применение систем сдц для компенсации сигналов
- •2.5.13. Цифровая система селекции движущихся целей
- •2,5.14. Основные характеристики систем сдц
- •2.5.15. Некоторые методы скоростной селекции
- •2.6. Обработка сигналов в условиях воздействия импульсных помех
- •2.6.1. Обработка сигналов в условиях воздействия несинхронных импульсных помех
- •2.6.2. Обработка сигнала на фоне шума и сигнальных импульсных помех
- •2.6.2.1. Понятие о динамическом диапазоне сигналов и помех и необходимости их нормирования
- •2.6.2.2. Нормирование уровня длинных импульсных помех с помощью схемы шоу
- •2.6.2.3. Нормирование уровня длинных импульсных помех с помощью схемы рос
- •2.6.2.4. Нормирование уровня коротких и длинных помех с помощью схемы шоу-рос
- •2.7. Системы подавления сигналов боковых лепестков диаграмм направленности антенн
- •2.7.1. Классификация систем подавления сигналов боковых лепестков
- •2.8. Активные маскирующие помехи и принципы защиты от них
- •2.8.2. Искусственные маскирующие активные помехи, особенности воздействия и способы создания
- •3.3, Алгоритм вторичной обработки
- •Глава IV третичная обработка информации
- •4.1. Принципы, способы и классификация третичной обработки радиолокационной информации
- •5.3. Кодирование запросных и ответных сигналов
- •5.3.1. Методы кодирования запросных и ответных сигналов
- •5.3.2. Структура запросных сигналов
- •5.3.3. Структура ответных сигналов
- •5.3.3.1. Ответный сигнал режима увд
- •6.4.3.2 Ответный сигнал режима rbs
- •5.4. Дешифрация ответной информации
- •5.4.1. Дешифрация сигналов в режиме увд
- •5.4.2. Дешифратор режима международного диапазона
- •5.5. Дискретно-адресная система вторичной радиолокации
- •5.6.. Моноимпульсный метод измерения
- •Содержание
- •Глава I Пространственно - временная обработка радиолокационной информации
- •Глава II Первичная обработка радиолокационной информации
- •Глава III Вторичная обработка радиолокационной информации
- •Глава IV Третичная обработка информации
- •Глава V Обработка сигналов средств вторичной радиолокации
2.6.2.2. Нормирование уровня длинных импульсных помех с помощью схемы шоу
Схема ШОУ (рис. 2.150,а) состоит из широкополосного фильтра Ш, ограничителя О, узкополосного фильтра У. Рассмотрим воздействие на нее радиоимпульсного сигнала длительностью 1 шума и помехи длительностью п1. Пренебрегаем искажениями сигнала и помехи в широкополосном фильтре, что вполне допустимо при его большой полосе. Узкополосный фильтр будем считать оптимальным для сигнала. Тогда отношение сигнал-шум на его выходе
,
где Ез — энергия сигнала на входе этого фильтра;
N03 — спектральная интенсивность шума на его входе.
а б
Рис. 2.150. Схема ШОУ (широкая полоса - ограничитель-узкая полоса)
При идеальном
ограничении входного колебания (рис.
2.151) выходное
колебание имеет вид
меандра, принимающего значения ±Uо.
При этом энергия сигнала на выходе этого
ограничителя (т.е. на входе узкополосного
фильтра) Ез= 1/2 V2
з1
=1/2(1U0)21,
а спектральная интенсивность шума
N03=Wш3/Fш=1/Fш
х 1/2(1U0)2,
где 1=
4/
— коэффициент первой гармоники
образовавшегося при ограничении
колебания в виде меандра, а Wш3—
мощность шума на входе узкополосного
фильтра. Подставляя два последних
выражения в им предшествующее, получаем
где n = Fш 1 Fш / Fу — отношение полос пропускания широкопо- лосного и узкополосного фильтров.
Чем больше это отношение, тем больше отношение сигнал-шум на выходе рассматриваемой схемы. Физически это объясняется тем, что с расширением полосы широкополосного фильтра уменьшается спектральная интенсивность шума после ограничения и мощность после узкополосной фильтрации.
Рис. 2.152. Прохождение сигнала, короткой и длинной помех через схему ШОУ
Рассмотрим прохождение радиоимпульсов сигнала, короткой и длинной помех (различающихся тем, что длительности короткой помехи п1 меньше, а длинной помехи "п1больше длительности сигнала 1 через систему ШОУ, в качестве узкополосного фильтра которой применяется оптимальный фильтр для импульсного сигнала указанной длительности.
Анализ временных диаграмм амплитуд напряжений (рис.2.152) в различных точках структурной схемы (рис. 2.150, б) показывает, что сигнал, короткая и длинная помехи имеют соответственно амплитуды напряжений на выходе системы
V4=1/ V31,
Uп4=1/ Uп3п1,
U"п4=1/ Uп31,
где ( — постоянная времени контура ВИРУ, связанная, с его полосой пропускания F соотношением = (F)-1, причем » 1 и » п1 , а V3 и Uп3 — амплитуды сигнала и помех на выходе ограничителя. Ввиду равенства последних (V3 = Uп3) амплитуды сигнала и длинной помехи совпадают:
V4= U"п4, а амплитуда короткой помехи Uп4= V4 (п1 /1).
рис. 2.153. Зависимость отношения помеха-шум на выходе схемы ШОУ от длительности входной помехи
Все это — следствие того, что совокупность задерживающего и вычитающего устройств в оптимальном фильтре ограничивает время интегрирования любого входного колебания длительностью 1 сигнала на входе.
Следовательно, если длительность помехи равна или больше длительности сигнала, то ее амплитуда на выходе узкополосного фильтра совпадает с амплитудой сигнала. Если же длительность помехи меньше длительности сигнала, то ее амплитуда и отношение помеха-шум пропорциональны длительности помехи.
Таким образом, отношение помеха-шум на выходе (рис. 2.153)
При п1≤1
При
п1>1
Важно отметить, что уровень помехи на выходе совершенно не зависит от ее амплитуды на входе (если она, конечно, достаточно велика). Схема ШОУ осуществляет селекцию импульсных помех по длительности. Помеха нормируется к уровню шума (41), если ее длительность удовлетворяет условию
Следовательно, схема ШОУ защищает только от достаточно коротких настроенных импульсных помех.
С точки зрения лучшего нормирования помех, а также уменьшения числа взаимных помех, создаваемых радиосистемами с близкими несущими частотами, которые попадают в полосу пропускания предограничительного фильтра, отношение n следует выбирать меньше. Но при этом уменьшается отношение сигнал-шум, а следовательно, и вероятность обнаружения сигнала. Кроме того, при уменьшении n увеличиваются потери из-за нелинейности обработки, обусловленные уменьшением степени нормализации шумов в узкополосном фильтре после ограничения. Расчеты показывают, что если при n =100 они составляют 1,5 дБ, то при n=10 возрастают до 5 дБ. На практике динамический диапазон сигналов выбирают q = 5 10 из условия нормальной работы индикатора кругового обзора, что соответствует n = 12,5 50.
