Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теоретические основы радиолокации 1.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
33.82 Mб
Скачать

1.3. Пространственно-временная обработка радиолокационной информации

Обработка радиолокационной информации предполагает объединение не на уровне сигналов, а на уровне первичной информации, т.е. единичных реше­нии о наличии и классе целей и единичных (разовых) оценок координат и па­раметров движения целей.

Пространственно-временная обработка включает: первичную обработку сигнала, вторичную и третичную обработку информации.

Под первичной обработкой подразумевается обработка принятого сиг­нала в одном пункте приема за один радиолокационный контакт с целью. Та­ким образом, такая обработка ограничена по пространству и по времени. Про­странство ограничено размерами антенной системы (единицы метров), а время - временем наблюдения (единицы - десятки миллисекунд). При этом с опреде­ленным качеством (вероятностями правильных и ложных решений, ошибками измерения) могут решаться все задачи радиолокационного наблюдения (обна­ружение, измерение, распознавание). Такую обработку сигнала принято назы­вать первичной, а извлекаемую из принятого сигнала в результате ограничен­ной по пространству и времени обработки информацию - первичной радиоло­кационной информацией, подразумевая под ней единичные решения о наличии или отсутствии целей, о классе целей, единичные оценки-замеры координат или параметров движения целей.

Как правило, в каждом пункте наблюдения к цели обращаются не один раз, а многократно. Если первичную информацию о целях объединить во времени за несколько циклов обращения к цели, то качество радиолокационной информации улучшится. Процесс объединения во времени первичной радиоло­кационной информации принято называть вторичной обработкой радиолока­ционной информации. В результате объединения во времени единичных ре­шений о наличии или отсутствии цели в том или ином элементе разрешения пространства наблюдения улучшаются характеристики обнаружения, а в ре­зультате объединения во времени единичных решений о классе цели улучша­ются характеристики распознавания. Объединением во времени единичных оценок-замеров координат и параметров движения цели уменьшаются ошибки измерения. Вторичная обработка позволяет уменьшить влияние естественных и искусственных помех, расширить объем получаемой информации путем вы­числения скорости и курса объектов или его траектории. Способы объединения во времени первичной информации и его характеристики составляют содержа­ние проблемы вторичной обработки радиолокационной информации.

Если радиолокационная система состоит из нескольких пунктов наблюдения (приема), то первичную информацию о целях можно объединить не только по времени, но и по пространству. При этом качество радиолокационной информации улучшится. Процесс объединения по пространству первичной (или вторичной) информации о целях принято называть третичной обработкой ра­диолокационной информации. Третичная обработка тоже приводит к улуч­шению характеристик обнаружения, распознавания и измерения.

Следует отметить, что первичная обработка сигнала (из одного пункта за время наблюдения) в сочетании с вторичной и третичной обработкой информа­ции не эквивалентна полной пространственно-временной обработке сигнала. Дело в том, что вторичная и третичная обработка первичной РЛИ заранее пре­допределяет некогерентное пространственно-временное объединение результа­тов первичной обработки. Типичными примерами такого объединения являют­ся АСУ воздушным движением ГА, основу которых составляют группировки некогерентных по времени и по пространству РЛС.

Однако в общем случае при многопозиционном построении радиолокационной системы с взаимной привязкой (позиций) не только по времени, но и по частоте и по фазе результаты первичной обработки сигналов, разделенные по времени и пространству, могут иметь корреляционные связи, которые долж­ны быть использованы при полной пространственно-временной обработке сиг­нала.

На рис. 1.10 изображена классификация пространственно-временной об­работки информации.

1.4. Физический смысл пространственно-временной обработки сигналов на фоне помех в адаптивных антенных решетках

Реализация адаптивных методов в радиолокации стала возможной в связи с появлением и интенсивным развитием антенных решеток. Чтобы правильно понимать и оценивать возможности таких адаптивных РЛС, необходимо рас­смотреть особенности обработки сигналов в антенных решетках и формирова­ние ими диаграмм направленности.

На рис. 1.11, а изображена диаграмма направленности (ДН) решетки, со­держащей 8 элементов в полярных координатах. Она формируется в результате весового суммирования напряжений отдельных элементов решетки на частоте . Если теперь обеспечить задержку во времени выходных сигналов от отдель­ных элементов, как это показано на рис. 1.11, б, то в результате главный лепе­сток ДН повернется на угол , где с—скорость распростране­ния сигналов в среде, d — расстояние между элементами антенной решетки,

— относительный сдвиг фазы между соседними элементами решетки.

Рис. 1.11. Диаграммы направленности 8-элементной антенной решетки:

а — исходная, б — для приема сигналов при отклонении ДН от нормали к плоскости решетки

Изменяя величины задержки выходных сигналов во времени от от­дельных элементов, можно обеспечить электрическое управление главным лепестком ДН в заданном угловом секторе.

Отношение сигнал-шум на выходе антенной решетки уменьшается при попадании на ее элементы мешающих сигналов по главному и боко­вым лепесткам. Отношение сигнал-шум падает также из-за изменения пространственных положений источников помех во времени, неудачного расположения антенной системы, а также из-за движения луча. Сказанное иллюстрирует рис. 1.12, а, где показана та же антенная решетка, что и на

Помехи \

Помела \

Рис. 1.12. Диаграмма направленности 8-элементной антенной решетки при воздействии

одного источника помехи:

а — исходная, б — с нулем, сформированным в направлении на источник помехи

рис. 1.11, а, но с направления, указанного пунктиром поступает помеховый сиг­нал с частотой . Он принимается по одному из боковых лепестков ДН. И если его мощность достаточно велика, то мощность помех на выходе решетки может оказаться сравнимой или даже существенно больше мощности полезного сигнала. Это может привести к потере работоспособности РЛС с такой антен­ной системой, если не будут приняты специальные меры. Они могут заклю­чаться в том, например, чтобы выставить весовые коэффициенты решетки так, как указано на рис. 1.12, б. При этом ДН решетки на частоте изменится сле­дующим образом. Боковой лепесток, максимум которого ранее совпадал с на­правлением на источник помехи, сместится так, что направление нулевого приема совпадет с направлением на источник помехи. Главный лепесток ДН изменится при этом незначительно. Таким образом, будет существенно сниже­на чувствительность решетки по отношению к сигналу и помехе. Можно подобрать значения весовых коэффициентов решетки так, чтобы образовать зоны нулевого приема в направлениях на несколько источников помех. Но для этого необходимо заранее знать их угловые положения. В реальных условиях такой информации обычно нет, поэтому стремятся построить адаптивные системы, которые автоматически выставляют нули в направлениях воздействия источни­ков помех. Прежде чем перейти к описанию такого рода систем, которые полу­чили название адаптивных антенных решеток, кратко рассмотрим их различные схемы построения. По своей структуре все адаптивные антенные решетки представляют собой весовые сумматоры (рис. 1.13). В фильтре, предназначен­ном для обработки узкополосных процессов (рис. 1.13, а), каждый элемент ре­шетки соединен с переменным весовым умножителем и с фазовращателем (на 90°). К его выходу подключен второй умножитель. Сигналы с выходов умно­жителей суммируются. Такая решетка обеспечивает линейную обработку узко­полосных процессов. Если необходимо обрабатывать помехи и сигналы в ши­роком диапазоне частот, то все фазовращатели необходимо заменить линиями задержки с отводами.

а) 0

Рис. 1.13. Виды адаптивных антенных решеток без цепей автоподстройки весовых коэффициентов для приема узкополосных сигналов (а) и для приема широкополосных сигналов или не разделяющейся обработки (б)

К каждому отводу подключается свой весовой умножитель. Если расстоя­ние между отводами достаточно мало, то такая схема приближается к идеаль­ному фильтру, который мог бы обеспечить управление фазой и величиной сиг­нала на каждой из частот заданного диапазона. Сигналы с выходов весовых ум­ножителей суммируются для получения выходного напряжения решетки. Этот вариант схемы решетки представлен на рис. 1.13, б. В такой системе удается сформировать нули ДН в направлениях на источники помех на каждой из час­тот заданного диапазона.