- •Глава I Пространственно-временная обработка радиолокационной информации
- •1.2. Пространственно-временная обработка
- •1.3. Пространственно-временная обработка радиолокационной информации
- •Глава II Первичная обработка радиолокационной информации
- •2.1. Обнаружение радиолокационных сигналов
- •2.1.3. Оптимальное обнаружение полностью известного сигнала
- •2.1.6. Принципы фильтровой и корреляционно—фильтровой обработки сигналов
- •2.1.7. Принципы оптимальной обработки некогерентных сигналов
- •2.1.8. Принципы обработки широкополосных сигналов
- •2.1.9. Ранговые обнаружители
- •2.1.10. Стабилизация уровня ложных тревог
- •2.2. Измерение параметров радиолокационных сигналов
- •2.2. 6. Методы измерения угловых координат
- •2.2.7. Многоканальные (моноимпулъсные) методы измерения угловых координат
- •2.2.8. Методы измерения скорости
- •2.2.9. Методы определения местоположения объектов
- •2.3.4. Разрешаемый объем
- •2.4. Распознавание воздушных объектов
- •2.5. Обработка сигналов в условиях воздействия пассивных помех и отражений от «местных предметов».
- •2.5.3. Когерентность сигналов
- •2.5.5. Радиолокаторы с внешней когерентностью
- •2.5.7. Селекция сигналов движущихся целей
- •2.5.8. Особенности систем сдц
- •2.5.8.1. Понятие слепого направления.
- •2.5.8.2, «Слепые» фазы.
- •2.5.9. Подавитель на промежуточной частоте
- •2.5.10. Череспериодное вычитание
- •2.5.11. «Слепые» скорости воздушных объектов
- •2.5.12. Применение систем сдц для компенсации сигналов
- •2.5.13. Цифровая система селекции движущихся целей
- •2,5.14. Основные характеристики систем сдц
- •2.5.15. Некоторые методы скоростной селекции
- •2.6. Обработка сигналов в условиях воздействия импульсных помех
- •2.6.1. Обработка сигналов в условиях воздействия несинхронных импульсных помех
- •2.6.2. Обработка сигнала на фоне шума и сигнальных импульсных помех
- •2.6.2.1. Понятие о динамическом диапазоне сигналов и помех и необходимости их нормирования
- •2.6.2.2. Нормирование уровня длинных импульсных помех с помощью схемы шоу
- •2.6.2.3. Нормирование уровня длинных импульсных помех с помощью схемы рос
- •2.6.2.4. Нормирование уровня коротких и длинных помех с помощью схемы шоу-рос
- •2.7. Системы подавления сигналов боковых лепестков диаграмм направленности антенн
- •2.7.1. Классификация систем подавления сигналов боковых лепестков
- •2.8. Активные маскирующие помехи и принципы защиты от них
- •2.8.2. Искусственные маскирующие активные помехи, особенности воздействия и способы создания
- •3.3, Алгоритм вторичной обработки
- •Глава IV третичная обработка информации
- •4.1. Принципы, способы и классификация третичной обработки радиолокационной информации
- •5.3. Кодирование запросных и ответных сигналов
- •5.3.1. Методы кодирования запросных и ответных сигналов
- •5.3.2. Структура запросных сигналов
- •5.3.3. Структура ответных сигналов
- •5.3.3.1. Ответный сигнал режима увд
- •6.4.3.2 Ответный сигнал режима rbs
- •5.4. Дешифрация ответной информации
- •5.4.1. Дешифрация сигналов в режиме увд
- •5.4.2. Дешифратор режима международного диапазона
- •5.5. Дискретно-адресная система вторичной радиолокации
- •5.6.. Моноимпульсный метод измерения
- •Содержание
- •Глава I Пространственно - временная обработка радиолокационной информации
- •Глава II Первичная обработка радиолокационной информации
- •Глава III Вторичная обработка радиолокационной информации
- •Глава IV Третичная обработка информации
- •Глава V Обработка сигналов средств вторичной радиолокации
2,5.14. Основные характеристики систем сдц
1. Коэффициент подавления пассивной помехи.
Для характеристики эффективности различных систем СДЦ используют несколько параметров. Одним из них является коэффициент подавления пассивной помехи Кп, который определяется как отношение мощности пассивной нефлюктуирующей помехи на входе системы СДЦ к ее мощности на выходе при равенстве входной и выходной мощностей полезного сигнала
Однако этот параметр не дает полной характеристики эффективности подавления пассивных помех, поскольку не учитывает особенностей прохождения полезного сигнала через систему СДЦ и не учитывает разнообразие параметров самой пассивной помехи.
2. Коэффициент подпомеховой видимости (коэффициент улучшения). Наиболее полную характеристику эффективности различных систем СДЦ
дает коэффициент подпомеховой видимости Кт. Коэффициентом подпомеховой видимости называют число, показывающее, во сколько раз можно увеличить интенсивность помехи на входе схемы защиты при условии, что качество обнаружения останется таким же, как при более слабой помехе в отсутствие схемы защиты. При линейной характеристике устройства защиты коэффициент подпомеховой видимости представляет собой частное от деления отношения сигнал/помеха по мощности на выходе устройства к соответствующему отношению на его входе
Данное выражение можно преобразовать к виду
где
-
коэффициент прохождения сигнала
через схему защиты;
- коэффициент
подавления помехи схемой защиты
Коэффициент прохождения сигнала для схемы однократного ЧПВ определяется следующим выражением:
Коэффициент подавления помехи определяется как [1]
где р(Тп) - между пер йодный коэффициент корреляции пассивной помехи.
Учитывая приведенные коэффициенты, выражение для коэффициента подпомеховой видимости схемы однократного череспериодного вычитания
будет
Анализ полученного выражения показывает, что коэффициент подпомеховой видимости зависит как от скорости цели, так и от ширины спектра пассивной помехи. Чем ближе скорость цели к оптимальной и чем уже спектр пассивной помехи, тем больше Kпв. Наоборот, коэффициент подпомеховой видимости тем меньше, чем больше отличие скорости цели от оптимальной и чем шире спектр пассивной помехи. Отметим, что
Приведенные формулы справедливы для случая отсутствия ограничения амплитуд сигналов в приемном тракте. При ограничении сигналов коэффициент подпомеховой видимости существенно уменьшается. Это объясняется расширением спектра частот пассивной помехи. Общая тенденция изменения коэффициента Кпв заключается в следующем:
- чем сильнее ограничение сигналов, отраженных от местных предметов, тем шире
спектр сигналов помех и тем меньше Kпв системы СДЦ;
- чем выше кратность вычитания сигналов в компенсаторе, тем сильнее
проявляется эффект ограничения сигналов на коэффициент подпомеховой ви
димости.
Снижение коэффициента подпомеховой видимости Кт обусловливается и такими факторами, как внутренние нестабильности параметров РЛС, прежде всего флгоктуациями амплитуд, фаз и временного положения сигналов в передающем и приемном трактах радиолокатора. Амплитудная нестабильность может возникнуть при генерации зондирующих импульсов в передатчиках, при плохой стабилизации питающих напряжений и т.д. Источниками фазовой нестабильности могут служить магнетрон, местный гетеродин, элементы приемного тракта, фазовая характеристика которых зависит от стабильности питающих напряжений или от величины приходящих сигналов. Временная нестабильность сигналов определяется параметрами генераторов синхронизирующих импульсов, передатчиков, задерживающими цепями компенсаторов и т.д.
Ухудшение междупериодного коэффициента корреляции пассивных помех может быть вызвано вращением антенны РЛС. При колокольной диаграмме направленности антенны
где М - число импульсов в пачке отраженного сигнала на уровне 0,61 по мощности.
Число импульсов в пачке зависит как от ширины диаграммы направленности антенны и скорости вращения антенны, так и от частоты следования импульсов
где Θβ - ширина ДНА в азимутальной плоскости;
Fn - частота следования импульсов запуска;
Vвр- скорость вращения антенны.
Помимо нестабильностей аппаратуры на статистические характеристики пассивных помех оказывают влияние нелинейность приемного тракта и неидентичность каналов схем череспериодного вычитания.
