- •Глава 1. Биологические макромолекулы…………………………………… 7
- •Глава 2. Информационные макромолекулы………………………………... 11
- •Часть I. Глава 3. Белки…………………………………………………… 11
- •Часть II. Глава 4. Hуклеиновые кислоты…………………………………… 75
- •Глава 1. Биологические макромолекулы
- •Типы связей, участвующие в формировании
- •Глава. 2. Информационные макромолекулы
- •Часть I. Глава 3. Белки
- •3.1. Аминокислоты – мономеры белка
- •Модифицированные аминокислоты
- •3.2. Пептиды и пептидная связь
- •(Стрелкой показано направление образования пептидной связи)
- •3.3. Биологически активные низкомолекулярные пептиды
- •Природные низкомолекулярные биологически активные пептиды
- •3.4. Структура высокомолекулярных пептидов - белков
- •3.4.1. Вторичная структура белка
- •Параллелльная β-структура; б – параллельные β-структуры
- •3.4.2.Третичная структура белка
- •3.4.2.1.Супервторичная структура белков
- •3.4.2.2.Доменная структура белка
- •Обозначены α-спирали, стрелками – β-структуры
- •3.4.3.Четвертичная структура белка
- •3.5. Фолдинг белков
- •3.5.1.Фолдазы
- •3.5.2.Шапероны
- •3.5.3.Болезни нарушения фолдинга
- •6.3.1.Амилоидозы
- •3.5.3.2.Прионовые болезни
- •3.6. Функционирование белка
- •3.6.1. Вещества, влияющие на функционирование белка
- •Гемоглобина при присоединении о2
- •3.7. Классификация белков
- •Некоторые сложные белки
- •3.8. Семейство гемоглобинов
- •3.8.1.Миоглобин
- •3.8.2.Гемоглобины
- •3.8.2.1. Мутантные гемоглобины человека
- •3.9.Суперсемейство иммуноглобулинов
- •3.9.1.Семейство иммуноглобулинов
- •3.10.2. Семейство т-клеточных, антигенраспознающих рецепторов
- •3.9.3.Семейство белков главного комплекса гистосовместимости
- •3.10.Семейство сериновых протеаз
- •И химотрипсина (б)
- •3.11.Изобелки
- •3.12.Роль белков в питанин
- •3.13. Изменение белкового состава организма
- •Часть II. Глава 4. Hуклеиновые кислоты
- •4.1.Общая структура нуклеиновых кислот
- •Наиболее распространенные нуклеозиды и нуклеозидфосфаты:
- •4.1.2.Структура нуклеиновых кислот
- •Нуклеотида фосфодиэфирная связь
- •Фосфорной кислоты; р – сахар пентоза , ао - азотистое основание.)
- •Структура молекулы днк
- •4.2.1. Первичная структура днк
- •4.2.2. Вторичная структура днк
- •3′ 5′ Цепей днк
- •4.2.3.Третичная структура днк (суперспирализация днк)
- •4.2.3.1. Нуклесомная нить.
- •4.2.3.2.Наднуклеосомная укладка днк
- •Фибрилла – нуклеомер: а – нуклеосома,
- •Уровни компактизации хроматина
- •4.3. Физико-химические свойства и функции днк
- •4.4. Разнообразие форм организации днк в клетках.
- •4. 5. Рнк: виды, структура и функции.
- •Рнк (Из: Николаев, 2007)
- •4.5.1. Структура и функции мРнк
- •Существующей петли мРнк вируса r-17 (б)
- •4.5.2. Структура и функции тРнк
- •4.5.3.Структура и функции рРнк
- •4.6. Комплексы нуклеиновых кислот и белков.
- •Проверочные тесты
4.5.1. Структура и функции мРнк
мРНК – матричная РНК составляет 3% от всей РНК клетки. Это короткоживущая молекула с молекулярной массой, колеблющейся в широких пределах и доходящей до 14*106 кДа. Функцией мРНК явля-
ется перенос информации с молекулы ДНК на молекулу белка. То есть, мРНК является матрицей для синтеза белка, посредником (messen- ger) между ДНК и белком. Имеется огромное количество видов мРНК, соответствующее количеству белков клетки, но первичная структура всех молекул мРНК имеют сходный план строения и содержит несколько областей с различной функциональной ролью (рис.104):
I. Колпачок (кэп) - участок из 1-4 модифицированных нуклеотидов, который находится на 5'-конце. Первым нуклеотидом всегда является 7-метилгуанилат. Колпачок является результатом модификации 5'-конца молекулы мРНК, которая происходит на стадии элонгации транск- рипции. Кэпирование 5'-конца осуществляет фермент гуанилтранс- фераза, который присоединяет молекулу ГДФ (одна связь гидролизи- руется предварительно гуанилтрансферазой.) 5'-концом к 5'-концу уже синтезированного фрагмента РНК с образованием 5',5'-фосфодиэфирной связи. В результате образуется последовательность Г-ффф-А-ф-Nф, где остаток гуанина (Г) находится в обратной ориентации по отношению к другим нуклеотидам мРНК, с образованием последовательности (7-метил-Г)5'5'-ф-ф-ф-(2-0-метилХ)-3'-ф-(2-0-метилУ)-ф-3'. Затем остаток гуанина метилируется, с образованием 7-метилгуанозина.
Рис. 104. Схема расположения функциональных участков на молекуле
мРНК (Из: Жимулев, 2007)
Следующие 2-3 нуклеотида кэпа также метилируютя по 2′-положе- нию рибозы. Модифицированный 5′-конец обеспечивает:
1) инициацию трансляции – рибосома узнает инициирующие кодо- ны АУГ только в присутствии кэпа;
2) удлиняет время жизни мРНК, защищая от действия ферментов - 5′-экзонуклеаз, которые могут гидролизовать только 3′-5′-фосфоди- эфирную связь; 5′,5′-фосфодиэфирная связь действию нуклеаз не подлежит;
3) кэп участвует в работе ферментой системы, обеспечивающей удаление интронов (некодирующая часть гена)
II. 5'- нетранслируемый участок (область) - последовательность из нескольких десятков нуклеотидов. Она комплиментарна одному из отделов рРНК, входящему в малую субъединицу рибосомы, поэтому она отвечает за первичное связывание мРНК с рибосомой.
III. Инициирующий кодон (AUG) - последовательность нуклео- тидов, с которой начинается трансляция любых мРНК. Кодон АУГ, соответствуюет метионину у эукариот и формилметионину у прокариот. После завершения синтеза белка метионин отщепляется.
IV. Кодирующая часть (транслируемая область) - последователь- ность нуклеотидов, которая содержит информацию о последовательности аминокислот в белке.
V. Кодон терминации (стоп-кодон) - один из 3 бессмысленных кодонов: УАА, УГА,УАГ.
VI. 3'- нетранслируемый участок - последовательность нуклео- тидов, превышающая по длине 5'-нетранслируемый участок. Является субстратом для присоединения поли-(А) -«хвоста» (поли-(А)-фрагмента).
VII. Поли-(А)-фрагмент - это последовательность из 150-200 адени- ловых нуклеотидов. Эти нуклеотиды присоединяются к 3'-нетранслиру- мому участку ферментом поли-А-полимеразой, образуя поли-(А)-«хвост» , который облегчает выход мРНК из ядра и защищает её от 3'-экзонуклеаз в цитоплазме. Последние 2 участка имеют отношение к регуляции про- должительности жизни мРНК. После того, как очередная рибосома закан- чивает трансляцию мРНК, от поли-(А)-фрагмента отщепляется 10-15 нук- леотидов. После разрушения поли-(А)-фрагмента, начинается распад мРНК.
На кодирующую часть приходится 60-70% нуклеотидов мРНК. В клетках молекулы мРНК практически всегда связаны с белками, кото-рые, вероятно, стабилизируют линейную структуру мРНК,то есть, препятствует образованию в кодирующей части «шпилек». Кроме того, белки могут защищать мРНК от преждевременного разрушения. Такие комплексы мРНК с белками называют информосомами.
Вторичная структура мРНК представляет собой частично упорядоченную пространственную конфигурацию с образованием «шпи- лек» на участках с равным количеством остатков аденина и урацила или гуанина и цитозина. Отчетливо выраженная вторичная структура с двуцепочными участками составляет до 25% всей мРНК. Роль участков вторичной структуры в реализации матричных функции точно не установлена. Предполагается, что «шпильки» играют определенную роль в обеспечении узнавания определенных участков рибосом при их связы- вании с мРНК (рис.105).
Третичная структура мРНК формируется при определенных значениях рh среды, ионной силы и температура в структуре со множес- твом участков с двойной спиралью (« шпильки»), которые затем взаимодействуют с образованием компактных , но бесформенных клубков (рис.106).
Рис.105. Вторичная структура м-РНК,
образующаяся при транскрипции гена белка Nnut
Рис.106. Схема третичной структуры мРНК (А) и действительно
