
- •Часть 1. Классическая теория автоматического управления 7
- •2.1. Общие понятия 13
- •Введение Лекция 1. От классических задач регулирования к интеллектуальному управлению
- •1.1. Основные определения
- •1.2. Эволюция задач и методов управления
- •Часть 1. Классическая теория автоматического управления Лекция 2. Основные принципы автоматического управления
- •2.1. Общие понятия
- •2.2. Фундаментальные принципы управления
- •2.2.1. Принцип разомкнутого управления
- •2.2.2. Принцип компенсации
- •2.2.3. Принцип обратной связи
- •Контрольные вопросы
- •Лекция 3. Статический режим сау
- •2.1. Общие понятия
- •2.2. Статические характеристики
- •2.3. Статическое и астатическое регулирование
- •Контрольные вопросы
- •Лекция 3. Динамический режим сау
- •3.1. Динамический режим сау. Уравнение динамики
- •3.2. Линеаризация уравнения динамики
- •3.3. Передаточная функция
- •3.4. Элементарные динамические звенья
- •Контрольные вопросы
- •Лекция 4. Структурные схемы сау
- •4.1. Эквивалентные преобразования структурных схем
- •4.2. Система автоматического регулирования напряжения генератора постоянного тока
- •4.3. Модель сар «Перевернутый маятник»
- •Контрольные вопросы
- •Лекция 5. Временные характеристики
- •5.1. Понятие временных характеристик
- •5.2. Переходные характеристики элементарных звеньев
- •5.2.1. Безынерционное (пропорциональное, усилительное) звено
- •5.2.2. Интегрирующее (астатическое) звено
- •5.2.3. Инерционное звено первого порядка (апериодическое)
- •5.2.4. Инерционные звенья второго порядка
- •5.2.5. Дифференцирующее звено
- •Контрольные вопросы
- •Лекция 6. Частотные характеристики
- •6.1. Понятие частотных характеристик
- •6.2. Частотные характеристики типовых звеньев
- •6.2.1. Безынерционное звено
- •6.2.2. Интегрирующее звено
- •6.2.3. Апериодическое звено
- •6.2.4. Инерционные звенья второго порядка
- •6.2.5. Правила построения частотных характеристик элементарных звеньев
- •Лекция 7. Частотные характеристики разомкнутых сау
- •7.1. Частотные характеристики разомкнутых одноконтурных сау
- •1) Безынерционное звено:
- •3) Интегрирующее звено:
- •4) Апериодическое звено:
- •7.2. Законы регулирования
- •Контрольные вопросы
- •Лекция 8. Алгебраические критерии устойчивости
- •8.1. Понятие устойчивости системы
- •8.2. Алгебраические критерии устойчивости
- •8.2.1. Необходимое условие устойчивости
- •8.2.1. Критерий Рауса
- •8.2.2. Критерий Гурвица
- •Контрольные вопросы
- •Лекция 9. Частотные критерии устойчивости
- •9.1. Принцип аргумента
- •9.2. Критерий устойчивости Михайлова
- •9.3. Критерий устойчивости Найквиста
- •Контрольные вопросы
- •Лекция 10. Запас устойчивости
- •10.1. Понятие структурной устойчивости
- •10.2. Понятие запаса устойчивости
- •10.3. Анализ устойчивости по логарифмической частотной характеристике
- •Контрольные вопросы
- •Лекция 11. D-разбиение. Качество сау
- •11.1. Теоретическое обоснование метода d-разбиений
- •11.3. Прямые методы оценки качества управления
- •11.3.1. Оценка переходного процесса при ступенчатом воздействии.
- •11.3.2. Оценка качества управления при периодических возмущениях
- •Контрольные вопросы
- •Лекция 12. Корневой и интегральный методы оценки качества сау
- •12.1. Корневой метод оценки качества управления
- •12.2. Интегральные критерии качества
- •Контрольные вопросы
- •Лекция 13. Частотные методы оценки качества
- •13.1. Теоретическое обоснование
- •13.2. Основные соотношения между вчх и переходной характеристикой
- •13.3. Метод трапеций
- •Контрольные вопросы
- •Лекция 14. Синтез сау
- •14.1. Синтез сау
- •14.1.1. Включение корректирующих устройств
- •14.1.2. Синтез корректирующих устройств.
- •14.2. Коррекция свойств сау изменением параметров звеньев
- •14.2.1. Изменение коэффициента передачи
- •14.2.2. Изменение постоянной времени звена сау
- •Контрольные вопросы
- •Лекция 15. Включение корректирующих звеньев
- •15.1. Коррекция свойств сау включением последовательных корректирующих звеньев
- •15.1.1. Включение интегрирующего звена в статическую сау
- •15.1.2. Включение апериодического звена
- •15.1.3. Включение форсирующего звена
- •15.1.4. Включение звена со сложной передаточной функцией
- •15.2. Последовательная коррекция по задающему воздействию
- •15.3. Коррекция с использованием неединичной обратной связи
- •15.4. Компенсация возмущающего воздействия
- •Контрольные вопросы
2.2.2. Принцип компенсации
Если возмущающий фактор искажает выходную величину до недопустимых пределов, то применяют принцип компенсации (рис.6, КУ - корректирующее устройство).
Пусть yо - значение выходной величины, которое требуется обеспечить согласно программе. На самом деле из-за возмущения f на выходе регистрируется значение y. Величина e = yо - y называется отклонением от заданной величины. Если каким-то образом удается измерить величину f, то можно откорректировать управляющее воздействие х на входе объекта управления, суммируя сигнал устройства управления с корректирующим воздействием, пропорциональным возмущению f и компенсирующим его влияние.
Примеры систем компенсации: биметаллический маятник в часах, компенсационная обмотка машины постоянного тока и т.п. На рис.6 в цепи нагревательного элемента (НЭ) стоит термосопротивление Rt, величина которого меняется в зависимости от колебаний температуры окружающей среды, корректируя напряжение на нагревательном элементе.
Достоинство принципа компенсации: быстрота реакции на возмущения. Он более точен, чем принцип разомкнутого управления. Недостаток: невозможность учета подобным образом всех возможных возмущений.
2.2.3. Принцип обратной связи
Наибольшее распространение в технике получил принцип обратной связи (рис.7). Здесь управляющее воздействие корректируется в зависимости от выходной величины y(t). И уже не важно, какие возмущения действуют на объект управления. Если значение y(t) отклоняется от требуемого, то происходит корректировка сигнала х(t) с целью уменьшения данного отклонения. Связь выхода объекта управления с его входом называется главной обратной связью (ОС).
В частном случае (рис.8) задающее формирует требуемое значение выходной величины yо(t), которое сравнивается с действительным значением на выходе САУ y(t).
Отклонение = yо - y с выхода сравнивающего устройства подается на вход регулятора (Р), объединяющего в себе устройство управления (УУ), управляющий орган (УО), чувствительный элемент (ЧЭ). Если ≠ 0, то регулятор формирует управляющее воздействие х(t), действующее до тех пор, пока не обеспечится равенство = 0, или y = yо. Так как на регулятор подается разность сигналов, то такая обратная связь называется отрицательной, в отличие от положительной обратной связи, когда сигналы складываются.
Такое управление в функции отклонения называется регулированием, а подобную САУ называют системой автоматического регулирования (САР). Так на рис.9 изображена упрощенная схема САР хлебопекарной печи.
Роль задающего устройства здесь выполняет потенциометр, напряжение на котором Uз сравнивается с напряжением на термопаре Uт. Их разность U через усилитель подается на исполнительный двигатель (ИД), регулирующий через редуктор положение движка реостата в цепи нагревательного элемента (НЭ). Наличие усилителя говорит о том, что данная САР является системой непрямого регулирования, так как энергия для функций управления берется от посторонних источников питания, в отличие от систем прямого регулирования, в которых энергия берется непосредственно от объекта управления, как, например, в САР уровня воды в баке (рис.10).
Недостатком принципа обратной связи является инерционность системы. Поэтому часто применяют комбинацию данного принципа с принципом компенсации, что позволяет объединить достоинства обоих принципов: быстроту реакции на возмущение принципа компенсации и точность регулирования независимо от природы возмущений принципа обратной связи.