
- •Часть 1. Классическая теория автоматического управления 7
- •2.1. Общие понятия 13
- •Введение Лекция 1. От классических задач регулирования к интеллектуальному управлению
- •1.1. Основные определения
- •1.2. Эволюция задач и методов управления
- •Часть 1. Классическая теория автоматического управления Лекция 2. Основные принципы автоматического управления
- •2.1. Общие понятия
- •2.2. Фундаментальные принципы управления
- •2.2.1. Принцип разомкнутого управления
- •2.2.2. Принцип компенсации
- •2.2.3. Принцип обратной связи
- •Контрольные вопросы
- •Лекция 3. Статический режим сау
- •2.1. Общие понятия
- •2.2. Статические характеристики
- •2.3. Статическое и астатическое регулирование
- •Контрольные вопросы
- •Лекция 3. Динамический режим сау
- •3.1. Динамический режим сау. Уравнение динамики
- •3.2. Линеаризация уравнения динамики
- •3.3. Передаточная функция
- •3.4. Элементарные динамические звенья
- •Контрольные вопросы
- •Лекция 4. Структурные схемы сау
- •4.1. Эквивалентные преобразования структурных схем
- •4.2. Система автоматического регулирования напряжения генератора постоянного тока
- •4.3. Модель сар «Перевернутый маятник»
- •Контрольные вопросы
- •Лекция 5. Временные характеристики
- •5.1. Понятие временных характеристик
- •5.2. Переходные характеристики элементарных звеньев
- •5.2.1. Безынерционное (пропорциональное, усилительное) звено
- •5.2.2. Интегрирующее (астатическое) звено
- •5.2.3. Инерционное звено первого порядка (апериодическое)
- •5.2.4. Инерционные звенья второго порядка
- •5.2.5. Дифференцирующее звено
- •Контрольные вопросы
- •Лекция 6. Частотные характеристики
- •6.1. Понятие частотных характеристик
- •6.2. Частотные характеристики типовых звеньев
- •6.2.1. Безынерционное звено
- •6.2.2. Интегрирующее звено
- •6.2.3. Апериодическое звено
- •6.2.4. Инерционные звенья второго порядка
- •6.2.5. Правила построения частотных характеристик элементарных звеньев
- •Лекция 7. Частотные характеристики разомкнутых сау
- •7.1. Частотные характеристики разомкнутых одноконтурных сау
- •1) Безынерционное звено:
- •3) Интегрирующее звено:
- •4) Апериодическое звено:
- •7.2. Законы регулирования
- •Контрольные вопросы
- •Лекция 8. Алгебраические критерии устойчивости
- •8.1. Понятие устойчивости системы
- •8.2. Алгебраические критерии устойчивости
- •8.2.1. Необходимое условие устойчивости
- •8.2.1. Критерий Рауса
- •8.2.2. Критерий Гурвица
- •Контрольные вопросы
- •Лекция 9. Частотные критерии устойчивости
- •9.1. Принцип аргумента
- •9.2. Критерий устойчивости Михайлова
- •9.3. Критерий устойчивости Найквиста
- •Контрольные вопросы
- •Лекция 10. Запас устойчивости
- •10.1. Понятие структурной устойчивости
- •10.2. Понятие запаса устойчивости
- •10.3. Анализ устойчивости по логарифмической частотной характеристике
- •Контрольные вопросы
- •Лекция 11. D-разбиение. Качество сау
- •11.1. Теоретическое обоснование метода d-разбиений
- •11.3. Прямые методы оценки качества управления
- •11.3.1. Оценка переходного процесса при ступенчатом воздействии.
- •11.3.2. Оценка качества управления при периодических возмущениях
- •Контрольные вопросы
- •Лекция 12. Корневой и интегральный методы оценки качества сау
- •12.1. Корневой метод оценки качества управления
- •12.2. Интегральные критерии качества
- •Контрольные вопросы
- •Лекция 13. Частотные методы оценки качества
- •13.1. Теоретическое обоснование
- •13.2. Основные соотношения между вчх и переходной характеристикой
- •13.3. Метод трапеций
- •Контрольные вопросы
- •Лекция 14. Синтез сау
- •14.1. Синтез сау
- •14.1.1. Включение корректирующих устройств
- •14.1.2. Синтез корректирующих устройств.
- •14.2. Коррекция свойств сау изменением параметров звеньев
- •14.2.1. Изменение коэффициента передачи
- •14.2.2. Изменение постоянной времени звена сау
- •Контрольные вопросы
- •Лекция 15. Включение корректирующих звеньев
- •15.1. Коррекция свойств сау включением последовательных корректирующих звеньев
- •15.1.1. Включение интегрирующего звена в статическую сау
- •15.1.2. Включение апериодического звена
- •15.1.3. Включение форсирующего звена
- •15.1.4. Включение звена со сложной передаточной функцией
- •15.2. Последовательная коррекция по задающему воздействию
- •15.3. Коррекция с использованием неединичной обратной связи
- •15.4. Компенсация возмущающего воздействия
- •Контрольные вопросы
1) Безынерционное звено:
W1 = K1 = 100 => L(w) = 20lg100 = 40;
2) форсирующее звено:
W2 = p + 1;
его параметры:
K2 = 1, T2 = 1, 2 = 1/T2 = 1;
3) Интегрирующее звено:
W3 = 1/p;
его ЛАЧХ проходит через точку L = 0 при частоте = 1;
4) Апериодическое звено:
W4 = 1/(0.1p + 1);
его параметры: K4 = 1, T4 = 0.1, 4 = 1/T4 = 10.
Порядок построения ЛАЧХ и ЛФЧХ показан на рис.57.
Иногда требуется решить обратную задачу, то есть определить передаточную функцию по известной ЛАЧХ. Процедура определения передаточной функции состоит из следующих этапов:
1) известная ЛАЧХ представляется в асимптотическом виде, для этого непрерывная кривая заменяется отрезками прямых либо горизонтальных, либо с наклоном, кратным ±20 дб/дек;
2) асимптотическая ЛАЧХ раскладывается на ЛАЧХ элементарных звеньев;
3) для каждой из полученных ЛАЧХ определяются k и 1 = 1/T и записывается передаточная функция типового звена;
4) передаточная функция САУ определяем путем перемножения передаточных функций типовых звеньев.
Описанный порядок иллюстрируется на рис.58.
Здесь ЛАЧХ может быть представлена суммой ЛАЧХ четырех типовых звеньев: пропорционального W1 = 100, апериодического W2 = 1/(p + 1), форсирующего W3 = 0.1p + 1 и апериодического W4 = 1/(0.01p + 1).
Таким образом, передаточная функция разомкнутой САУ имеет вид
.
В более сложных случаях наклоны ЛАЧХ на некоторых участках превышают ± 20дб/дек. Тогда помимо параметров K и T приходится определять еще и коэффициенты демпфирования r.
Зная передаточную функцию разомкнутой САУ можно построить ее уравнение динамики
=>
=>
=>
.
Таким образом можно определить уравнение динамики реальных звеньев и всей реальной САУ, если оно теоретически это сделать затруднительно. Для снятия частотных характеристик реальной разомкнутой САУ на ее вход подают гармонический сигнал с изменяемой частотой и определяют изменение амплитуды и фазы выходного сигнала в зависимости от частоты. По полученным характеристикам определяют уравнение динамики, после чего САУ можно исследовать теоретически.
7.2. Законы регулирования
Пусть задана какая-то САР (рис.59).
Законом
регулирования называется математическая
зависимость, в соответствии с которой
у
правляющее
воздействие на объект вырабатывалось
бы безынерционным регулятором.
Простейшим из них является пропорциональный закон регулирования, при котором
u(t) = Ke(t) (рис.60а),
где u(t) - это управляющее воздействие, формируемое регулятором, e(t) - отклонение регулируемой величины от требуемого значения, K - коэффициент пропорциональности регулятора Р.
То есть для создания управляющего воздействия необходимо наличие ошибки регулирования и чтобы величина этой ошибки была пропорциональна возмущающему воздействию f(t). Другими словами САУ в целом должна быть статической.
Такие регуляторы называют П-регуляторами.
Так как при воздействии возмущения на объект управления отклонение регулируемой величины от требуемого значения происходит с конечной скоростью (рис.60б), то в начальный момент на вход регулятора подается очень малая величина e , вызывая при этом слабые управляющие воздействия u. Для повышения быстродействия системы желательно форсировать процесс управления.
Для этого в регулятор вводят звенья, формирующие на выходе сигнал, пропорциональный производной от входной величины, то есть дифференцирующие или форсирующие звенья.
Такой закон регулирования называется пропорционально - дифференциальным:
u(t) = K1e(t) + K2 de(t)/dt.
В соответствии с ним работают ПД-регуляторы.
Чем быстрее нарастает отклонение регулируемой величины от требуемого значения, тем интенсивнее работает ПД-регулятор, что препятствует дальнейшему нарастанию данного отклонения. Кроме того при увеличении отклонения (de(t)/dt > 0) управляющий сигнал u будет больше, чем при уменьшении (de(t)/dt < 0), что также играет положительную роль, снижая колебательность процеса управления.
Добавление в регулятор двух дифференцирующих звеньев позволяет формировать управляющее воздействие по второй производной отклонения e , такой регулятор называется ПДД-регулятором.
Интегральный закон регулирования реализуется И-регулятором, его формулировка:
.
Этот регулятор наращивает управляющее воздействие до тех пор пока управляемая величина отличается от требуемого значения, то есть пока e(t) 0.
И-регулятор обеспечивает астатическое регулирование.
При малых e управляющее воздействие изменяется с малой скоростью, поэтому данный регулятор очень инерционный.
Чтобы увеличить быстродействие обычно последовательно с ним включают усилитель, это дает пропорционально-интегральный закон регулирования (ПИ-регулятор), его формула:
.
Первое слагаемое обеспечивает быстродействие, второе - астатичность, то есть точность регулирования.
Еще большее быстродействие обеспечивается при добавлении слагаемого, пропорционального производной от отклонения управляемой величины de/dt, такой закон регулирования обеспечивается ПИД-регулятором, его формула:
.