
- •Часть 1. Классическая теория автоматического управления 7
- •2.1. Общие понятия 13
- •Введение Лекция 1. От классических задач регулирования к интеллектуальному управлению
- •1.1. Основные определения
- •1.2. Эволюция задач и методов управления
- •Часть 1. Классическая теория автоматического управления Лекция 2. Основные принципы автоматического управления
- •2.1. Общие понятия
- •2.2. Фундаментальные принципы управления
- •2.2.1. Принцип разомкнутого управления
- •2.2.2. Принцип компенсации
- •2.2.3. Принцип обратной связи
- •Контрольные вопросы
- •Лекция 3. Статический режим сау
- •2.1. Общие понятия
- •2.2. Статические характеристики
- •2.3. Статическое и астатическое регулирование
- •Контрольные вопросы
- •Лекция 3. Динамический режим сау
- •3.1. Динамический режим сау. Уравнение динамики
- •3.2. Линеаризация уравнения динамики
- •3.3. Передаточная функция
- •3.4. Элементарные динамические звенья
- •Контрольные вопросы
- •Лекция 4. Структурные схемы сау
- •4.1. Эквивалентные преобразования структурных схем
- •4.2. Система автоматического регулирования напряжения генератора постоянного тока
- •4.3. Модель сар «Перевернутый маятник»
- •Контрольные вопросы
- •Лекция 5. Временные характеристики
- •5.1. Понятие временных характеристик
- •5.2. Переходные характеристики элементарных звеньев
- •5.2.1. Безынерционное (пропорциональное, усилительное) звено
- •5.2.2. Интегрирующее (астатическое) звено
- •5.2.3. Инерционное звено первого порядка (апериодическое)
- •5.2.4. Инерционные звенья второго порядка
- •5.2.5. Дифференцирующее звено
- •Контрольные вопросы
- •Лекция 6. Частотные характеристики
- •6.1. Понятие частотных характеристик
- •6.2. Частотные характеристики типовых звеньев
- •6.2.1. Безынерционное звено
- •6.2.2. Интегрирующее звено
- •6.2.3. Апериодическое звено
- •6.2.4. Инерционные звенья второго порядка
- •6.2.5. Правила построения частотных характеристик элементарных звеньев
- •Лекция 7. Частотные характеристики разомкнутых сау
- •7.1. Частотные характеристики разомкнутых одноконтурных сау
- •1) Безынерционное звено:
- •3) Интегрирующее звено:
- •4) Апериодическое звено:
- •7.2. Законы регулирования
- •Контрольные вопросы
- •Лекция 8. Алгебраические критерии устойчивости
- •8.1. Понятие устойчивости системы
- •8.2. Алгебраические критерии устойчивости
- •8.2.1. Необходимое условие устойчивости
- •8.2.1. Критерий Рауса
- •8.2.2. Критерий Гурвица
- •Контрольные вопросы
- •Лекция 9. Частотные критерии устойчивости
- •9.1. Принцип аргумента
- •9.2. Критерий устойчивости Михайлова
- •9.3. Критерий устойчивости Найквиста
- •Контрольные вопросы
- •Лекция 10. Запас устойчивости
- •10.1. Понятие структурной устойчивости
- •10.2. Понятие запаса устойчивости
- •10.3. Анализ устойчивости по логарифмической частотной характеристике
- •Контрольные вопросы
- •Лекция 11. D-разбиение. Качество сау
- •11.1. Теоретическое обоснование метода d-разбиений
- •11.3. Прямые методы оценки качества управления
- •11.3.1. Оценка переходного процесса при ступенчатом воздействии.
- •11.3.2. Оценка качества управления при периодических возмущениях
- •Контрольные вопросы
- •Лекция 12. Корневой и интегральный методы оценки качества сау
- •12.1. Корневой метод оценки качества управления
- •12.2. Интегральные критерии качества
- •Контрольные вопросы
- •Лекция 13. Частотные методы оценки качества
- •13.1. Теоретическое обоснование
- •13.2. Основные соотношения между вчх и переходной характеристикой
- •13.3. Метод трапеций
- •Контрольные вопросы
- •Лекция 14. Синтез сау
- •14.1. Синтез сау
- •14.1.1. Включение корректирующих устройств
- •14.1.2. Синтез корректирующих устройств.
- •14.2. Коррекция свойств сау изменением параметров звеньев
- •14.2.1. Изменение коэффициента передачи
- •14.2.2. Изменение постоянной времени звена сау
- •Контрольные вопросы
- •Лекция 15. Включение корректирующих звеньев
- •15.1. Коррекция свойств сау включением последовательных корректирующих звеньев
- •15.1.1. Включение интегрирующего звена в статическую сау
- •15.1.2. Включение апериодического звена
- •15.1.3. Включение форсирующего звена
- •15.1.4. Включение звена со сложной передаточной функцией
- •15.2. Последовательная коррекция по задающему воздействию
- •15.3. Коррекция с использованием неединичной обратной связи
- •15.4. Компенсация возмущающего воздействия
- •Контрольные вопросы
6.2.5. Правила построения частотных характеристик элементарных звеньев
При
построении ЧХ некоторых звеньев можно
использовать “правило
зеркала”:
при k = 1 ЛАЧХ и ЛФЧХ звеньев с обратными
передаточными функциями зеркальны
относительно горизонтальной оси. Так
на рис.55 изображены ЧХ идеального
дифференцирующего и идеального
форсир
ующего
звеньев.
Если k 1, то передаточную функцию звена можно рассматривать как произведение W = k.W1, где W1 - передаточная функция с k = 1. При этом амплитуда вектора АФЧХ W(j ) при всех значениях должна быть увеличена в k раз, то есть A( ) = kA1( ). Поэтому, например, центр полуокружности АФЧХ апериодического звена будет находиться не в точке P = 1/2, а в точке k/2. ЛАЧХ также изменится: L( ) = 20lgA( ) = 20lgkA1( ) = 20lgk + 20lgA1( ). Поэтому при k 1 ЛАЧХ звена нужно поднять по оси ординат не меняя ее формы на 20lgk. На ЛФЧХ изменение k никак не отразится. Для примера на рис.56 приведены частотные характеристики апериодического звена при k = 10 и T = 1c. При этом ЛАЧХ апериодического звена с k = 1 поднята вверх на 20lg10 = 20.
Вопросы
Что называется частотными характеристиками?
Как получить частотные характеристики опытным путем?
Как получить частотные характеристики теоретическим путем по известной передаточной функции звена?
Что такое и как получить АФЧХ?
Что такое и как получить ВЧХ?
Что такое и как получить МЧХ?
Что такое и как получить АЧХ?
Что такое и как получить ФЧХ?
Что такое и как получить ЛАЧХ?
Что такое и как получить ЛФЧХ?
Как построить годограф АФЧХ?
Постройте АФЧХ, ЛАЧХ и ЛФЧХ безынерционного звена.
Постройте АФЧХ, ЛАЧХ и ЛФЧХ интегрирующего звена.
Постройте АФЧХ, ЛАЧХ и ЛФЧХ апериодического звена.
Постройте АФЧХ, ЛАЧХ и ЛФЧХ колебательного звена.
Постройте АФЧХ, ЛАЧХ и ЛФЧХ консервативного звена.
Постройте ЛАЧХ и ЛФЧХ идеального дифференцирующего звена.
Постройте ЛАЧХ и ЛФЧХ идеального форсирующего звена.
Как изменятся ЛАЧХ и ЛФЧХ звена, если коэффициент усиления возрастет в 100 раз?
Для чего служит правило зеркала.
Лекция 7. Частотные характеристики разомкнутых сау
7.1. Частотные характеристики разомкнутых одноконтурных сау
При исследовании и проектировании САУ часто используют АФЧХ, ЛАЧХ и ЛФЧХ разомкнутых систем. Это объясняется тем, что разомкнутые САУ более просто исследовать экспериментально, чем замкнутые. В то же время по ним можно получить исчерпывающую информацию о поведении данной САУ в замкнутом состоянии.
Любую многоконтурную САУ можно привести к одноконтурной. Разомкнутая одноконтурная САУ состоит из цепочки последовательно соединенных динамических звеньев. Зная передаточную функцию разомкнутой САУ можно построить ее ЧХ. И наоборот, зная ЧХ разомкнутой САУ, снятую, например, опытным путем, можно найти ее передаточную функцию.
Передаточная функция разомкнутой одноконтурной системы равна произведению передаточных функций отдельных звеньев:
.
Заменив в этом выражении p на j w получим ее АФЧХ:
.
АЧХ:
,
значит
ЛАЧХ равна сумме ЛАЧХ звеньев:
.
ЛФЧХ:
.
Таким образом ЛАЧХ и ЛФЧХ разомкнутой САУ строят путем графического сложения ЛАЧХ и ЛФЧХ звеньев. При этом ограничиваются построением асимптотической ЛАЧХ.
Для построения ЛАЧХ и ЛФЧХ рекомендуется следующий порядок:
раскладывают сложную передаточную функцию на множители, являющиеся передаточными функциями типовых динамических звеньев (порядок полиномов числителя и знаменателя не выше второго);
вычисляют сопрягающие частоты отдельных звеньев и строят асимптотические ЛАЧХ и ЛФЧХ каждого элементарного звена;
путем графического суммирования ЛАЧХ и ЛФЧХ звеньев строят результирующие ЧХ.
Рассмотрим конкретный пример:
W(p)
=
=
W1W2W3W4.
Раскладываем данную передаточную функцию на передаточные функции элементарных звеньев: