
- •Часть 1. Классическая теория автоматического управления 7
- •2.1. Общие понятия 13
- •Введение Лекция 1. От классических задач регулирования к интеллектуальному управлению
- •1.1. Основные определения
- •1.2. Эволюция задач и методов управления
- •Часть 1. Классическая теория автоматического управления Лекция 2. Основные принципы автоматического управления
- •2.1. Общие понятия
- •2.2. Фундаментальные принципы управления
- •2.2.1. Принцип разомкнутого управления
- •2.2.2. Принцип компенсации
- •2.2.3. Принцип обратной связи
- •Контрольные вопросы
- •Лекция 3. Статический режим сау
- •2.1. Общие понятия
- •2.2. Статические характеристики
- •2.3. Статическое и астатическое регулирование
- •Контрольные вопросы
- •Лекция 3. Динамический режим сау
- •3.1. Динамический режим сау. Уравнение динамики
- •3.2. Линеаризация уравнения динамики
- •3.3. Передаточная функция
- •3.4. Элементарные динамические звенья
- •Контрольные вопросы
- •Лекция 4. Структурные схемы сау
- •4.1. Эквивалентные преобразования структурных схем
- •4.2. Система автоматического регулирования напряжения генератора постоянного тока
- •4.3. Модель сар «Перевернутый маятник»
- •Контрольные вопросы
- •Лекция 5. Временные характеристики
- •5.1. Понятие временных характеристик
- •5.2. Переходные характеристики элементарных звеньев
- •5.2.1. Безынерционное (пропорциональное, усилительное) звено
- •5.2.2. Интегрирующее (астатическое) звено
- •5.2.3. Инерционное звено первого порядка (апериодическое)
- •5.2.4. Инерционные звенья второго порядка
- •5.2.5. Дифференцирующее звено
- •Контрольные вопросы
- •Лекция 6. Частотные характеристики
- •6.1. Понятие частотных характеристик
- •6.2. Частотные характеристики типовых звеньев
- •6.2.1. Безынерционное звено
- •6.2.2. Интегрирующее звено
- •6.2.3. Апериодическое звено
- •6.2.4. Инерционные звенья второго порядка
- •6.2.5. Правила построения частотных характеристик элементарных звеньев
- •Лекция 7. Частотные характеристики разомкнутых сау
- •7.1. Частотные характеристики разомкнутых одноконтурных сау
- •1) Безынерционное звено:
- •3) Интегрирующее звено:
- •4) Апериодическое звено:
- •7.2. Законы регулирования
- •Контрольные вопросы
- •Лекция 8. Алгебраические критерии устойчивости
- •8.1. Понятие устойчивости системы
- •8.2. Алгебраические критерии устойчивости
- •8.2.1. Необходимое условие устойчивости
- •8.2.1. Критерий Рауса
- •8.2.2. Критерий Гурвица
- •Контрольные вопросы
- •Лекция 9. Частотные критерии устойчивости
- •9.1. Принцип аргумента
- •9.2. Критерий устойчивости Михайлова
- •9.3. Критерий устойчивости Найквиста
- •Контрольные вопросы
- •Лекция 10. Запас устойчивости
- •10.1. Понятие структурной устойчивости
- •10.2. Понятие запаса устойчивости
- •10.3. Анализ устойчивости по логарифмической частотной характеристике
- •Контрольные вопросы
- •Лекция 11. D-разбиение. Качество сау
- •11.1. Теоретическое обоснование метода d-разбиений
- •11.3. Прямые методы оценки качества управления
- •11.3.1. Оценка переходного процесса при ступенчатом воздействии.
- •11.3.2. Оценка качества управления при периодических возмущениях
- •Контрольные вопросы
- •Лекция 12. Корневой и интегральный методы оценки качества сау
- •12.1. Корневой метод оценки качества управления
- •12.2. Интегральные критерии качества
- •Контрольные вопросы
- •Лекция 13. Частотные методы оценки качества
- •13.1. Теоретическое обоснование
- •13.2. Основные соотношения между вчх и переходной характеристикой
- •13.3. Метод трапеций
- •Контрольные вопросы
- •Лекция 14. Синтез сау
- •14.1. Синтез сау
- •14.1.1. Включение корректирующих устройств
- •14.1.2. Синтез корректирующих устройств.
- •14.2. Коррекция свойств сау изменением параметров звеньев
- •14.2.1. Изменение коэффициента передачи
- •14.2.2. Изменение постоянной времени звена сау
- •Контрольные вопросы
- •Лекция 15. Включение корректирующих звеньев
- •15.1. Коррекция свойств сау включением последовательных корректирующих звеньев
- •15.1.1. Включение интегрирующего звена в статическую сау
- •15.1.2. Включение апериодического звена
- •15.1.3. Включение форсирующего звена
- •15.1.4. Включение звена со сложной передаточной функцией
- •15.2. Последовательная коррекция по задающему воздействию
- •15.3. Коррекция с использованием неединичной обратной связи
- •15.4. Компенсация возмущающего воздействия
- •Контрольные вопросы
5.2. Переходные характеристики элементарных звеньев
Рассмотрим только самые основные звенья.
5.2.1. Безынерционное (пропорциональное, усилительное) звено
Это звено, для которого в любой момент времени выходная величина пропорциональна входной.
Его уравнение: y(t) = k u(t).
Передаточная функция: W(p) = k.
Переходная характеристика: h(t) = k 1(t).
В ответ на единичное ступенчатое воздействие сигнал на выходе мгновенно достигает величины в k раз большей, чем на входе и сохраняет это значение (рис.43). При k = 1 звено никак себя не проявляет, а при k = - 1 - инвертирует входной сигнал.
Любое реальное звено обладает инерционностью, но с определенной точностью некоторые реальные звенья могут рассматриваться как безынерционные, например, жесткий механический рычаг, редуктор, потенциометр, электронный усилитель и т.п.
5.2.2. Интегрирующее (астатическое) звено
Его уравнение
,
или
,
или
.
Передаточная функция:
.
Переходная характеристика:
(рис.44).
При k = 1
звено представляет собой “чистый”
интегратор
.
Интегрирующее звено неограниченно
"накапливает" входное воздействие.
Примеры интегрирующих звеньев:
электродвигатель, поршневой гидравлический
двигатель, емкость и т.п. Введение его
в САУ превращает систему в астатическую,
то есть ликвидирует статическую ошибку.
5.2.3. Инерционное звено первого порядка (апериодическое)
Уравнение динамики:
,
или
.
Передаточная функция:
.
Переходная характеристика может быть получена с помощью формулы Хевисайда:
,
где
- корень уравнения D(p)
= Tp + 1 = 0; D’(p1)
= T.
П
ереходная
характеристика имеет вид экспоненты
(рис.45), по которой можно определить
передаточный коэффициент k,
равный установившемуся значению
h(t),
и постоянную времени Т
по времени t,
соответствующему точке пересечения
касательной к кривой в начале координат
с ее асимптотой. При достаточно больших
Т
звено на начальном участке может
рассматриваться как интегрирующее, при
малых Т
звено приближенно можно рассматривать
как безынерционное.
Примеры апериодического звена: термопара, электродвигатель, четырехполюсник из сопротивления и емкости или сопротивления и индуктивности.
5.2.4. Инерционные звенья второго порядка
Его уравнение:
.
Передаточная функция:
.
Решение уравнения зависит
от соотношения постоянных времени T1
и T2,
которое определяет коэффициент затухания
.
Можно записать
,
где T = T1.
Если r ≥1, то знаменатель W(p) имеет два вещественных корня p1 и p2 и раскладывается на два сомножителя:
T2 p2 + 2 r T p + 1 = T2 (p - p1).(p - p2).
Такое звено можно разложить на два апериодических звена первого порядка, поэтому оно не является элементарным.
П
ри
r<1
корни полинома знаменателя W(p)
комплексно сопряженные: p1,2
=
±
j
.
Переходная характеристика представляет
собой выражение, характеризующее
затухающий колебательный процесс с
затуханием
и
частотой
(рис.46). Такое звено называется
колебательным.
При r = 0
колебания носят незатухающий характер.
Такое звено является частным случаем
колебательного звена и называется
консервативным.
Примерами колебательного звена могут служить пружина, имеющая успокоительное устройство, электрический колебательный контур с активным сопротивлением и т.п. Зная характеристики реального устройства можно определить его параметры как колебательного звена. Передаточный коэффициент k равен установившемуся значению переходной функции.