- •В. А. Игнатова концепции современного естествознания Учебное пособие
- •Предисловие
- •I. Методические материалы к самостоятельному изучению дисциплины программа курса «концепции современного естествознания» Пояснительная записка
- •Содержание дисциплины
- •Естествознание - система наук о природе
- •2 Естественнонаучная картина мира
- •3.Основополагающие концепции современного естествознания
- •4. Некоторые приложения концепций современного естествознания
- •Тематический план изучения дисциплины
- •Темы практических занятий
- •Тема 1. Естественнонаучная картина мира
- •Вопросы, выносимые на обсуждение
- •Литература для подготовки к занятию
- •Тема 2. Основополагающие концепции современного естествознания
- •Вопросы, выносимые на обсуждение
- •Литература для подготовки к занятию
- •Методические указания по самостоятельному изучению теоретической части дисциплины
- •Методические указания по подготовке к практическим занятиям
- •Методические указания по подготовке к текущему контролю знаний и итоговой аттестации (экзамен или зачет)
- •Вопросы для самоконтроля
- •Тесты для самоконтроля
- •2. Слово «концепция» пришло из:
- •3. Принцип соответствия утверждает:
- •Критерии итоговой аттестации
- •Вопросы для размышления и творческие задания
- •Тематика контрольных работ
- •Основополагающие концепции современного естествознания
- •Системный подход к описанию окружающего мира
- •Самоорганизация и эволюция Земли
- •Перечень вопросов к итоговой аттестации
- •Ключи к тестам
- •Учебники и учебные пособия для подготовки к итоговой аттестации
- •Дополнительная литература
- •II. Теоретическая часть
- •1. Естествознание - система наук о природе
- •1.1. Природа и способы ее постижения
- •1.1.1 Природа как целостная система
- •1.1.2. Человек как познающий субъект природы
- •1.1.3. Мифология, религия, искусство, наука как компоненты культуры и способы постижения природы
- •1.1.4 Познание, мировоззрение и картина мира
- •1.1.5 Мировоззрение и культура
- •1.2 Наука и научный метод познания
- •Наука как компонент культуры
- •Наука как способ объективного познания
- •1.2.1 Наука как компонент культуры
- •1.2.2 Наука как способ объективного познания
- •1.2.3 Динамика научного познания
- •1.2.4. Научная картина мира
- •1.3 Естествознание в системе науки
- •1.3.1 Дифференциация наук
- •1.3.2 Естествознание как иерархия наук о природе
- •1.3.3. Естествознание и социальная жизнь общества
- •1.3.4 Проблема интеграции естественнонаучного и гуманитарного знания
- •2. Естественнонаучная картина мира
- •2.1 Структура естественнонаучной картины мира
- •1. Составляющие естественнонаучной картины мира
- •Фундаментальные понятия естествознания
- •2.1.1 Составляющие естественнонаучной картины мира
- •2.1.2 Фундаментальные понятия естествознания
- •1. Материя и формы ее существования: вещество и поле
- •2. Атрибуты материи: отражение и движение
- •3. Пространство и время
- •2.1.3 Фундаментальные законы природы и основополагающие принципы естествознания
- •1.Фундаментальные законы природы
- •2. Основополагающие принципы естествознания
- •2.2. Эволюция естествознания
- •Доклассический период развития науки
- •Классическая наука
- •Неклассическая наука
- •2.2.1 Доклассический период развития науки
- •1. Научные программы античности
- •2. Средневековая наука
- •2.2.2. Классическая наука
- •1.Естествознание в «Новое время»
- •2. Естествознание XIX века
- •3. Кризис классической науки
- •2.2.3 Неклассическая наука
- •1. Релятивистская картина мира
- •2. Квантово-полевая картина мира
- •3. Строение материи и физика элементарных частиц
- •4. Соотношение классической, релятивистской и квантовой картин
- •5. Постнеклассическая наука
- •3. Основополагающие концепции современного естествознания
- •3. 1 Элементы теории систем
- •3. 1. 1 Системный подход к описанию окружающего мира
- •3. 1. 2 Классификации социоприродных систем
- •3. 1. 3 Свойства открытых систем
- •3. 1. 4 Системная модель мира
- •3. 2 Самоорганизация и эволюция сложных систем, далеких от равновесия
- •Общие представления
- •Роль случайного в поведении сложных систем
- •Синергетическая картина мира и универсальный эволюционизм
- •3. 2. 1 Общие представления
- •3. 2. 2 Роль случайного в поведении сложных систем
- •3. 2. 3 Элементы теории самоорганизации систем
- •1. Фазовое пространство и фазовые траектории
- •2. Точка бифуркации
- •3. Фракталы и аттракторы
- •4. Сценарий самоорганизации сложных систем
- •3. 2. 4 Синергетическая картина мира и универсальный эволюционизм
- •1. Синергетическая картина мира
- •2. Универсальный эволюционизм
- •3. 3 Элементы теории управления
- •1. Самоорганизация и организация
- •Контур с обратной связью
- •Управленческая деятельность
- •3. 3. 1 Самоорганизация и организация
- •3.3.2. Контур с обратной связью
- •3.3.3. Управленческая деятельность
- •3. 4 Некоторые приложения концепций современного естествознания
- •3. 4. 1 Самоорганизация и эволюция вселенной
- •1. Структура Вселенной
- •2. Гипотеза Большого Взрыва
- •3. Образование галактик
- •4. Химическая эволюция
- •5. Будущее Вселенной
- •3. 4. 2 Эволюция звезд и звездно-планетных систем
- •1. Эволюция звезд
- •2. Солнце
- •3. Планеты Солнечной системы
- •3. 4. 3 Самоорганизация и эволюция земли
- •1. Общая характеристика планеты
- •2. Физические оболочки Земли
- •3. Геосфера
- •4. Биосфера
- •3. 4. 4 Самоорганизация и эволюция живого вещества
- •1. Общие представления
- •2. Гипотезы о происхождении жизни на Земле
- •3. Биологическая эволюция и концепция генетики
- •4. Антропный принцип и проблемы происхождения жизни
- •3. 4. 5 Самоорганизация и антропогенез
- •1. Природа человека
- •2. Современные представления о происхождении и эволюции человека
- •3. Эволюция головного мозга и развитие психики
- •Генетическая программа человека и природа интеллектуальных способностей
- •3. 4. 6 Самоорганизация, организация и социогенез
- •1. Краткий исторический экскурс
- •2. Системно-синергетический подход к описанию социальных систем
- •3. Антропосоциогенез и формирование глобальных экологических проблем
- •4. Новые цивилизационные модели и перспективы человека
- •Заключение
- •Глоссарий
3. 4 Некоторые приложения концепций современного естествознания
Цели и задачи раздела:
Проиллюстрировать идеи синергетики на примерах самоорганизации и эволюции космических, планетарных, биологических и социальных систем (Вселенная, Земля, человек, общество).
План
1. Самоорганизация и эволюция Вселенной
Эволюция звезд и звездно-планетных систем
Самоорганизация и эволюция Земли
Самоорганизация и эволюция живого вещества
Самоорганизация и антропогенез
Самоорганизация, организация и социогенез
3. 4. 1 Самоорганизация и эволюция вселенной
1. Структура Вселенной
По оценкам современной науки возраст Вселенной около 15-20 млрд. лет. Она состоит из огромного числа метагалактик. Метагалактикой называют ту область Вселенной, которая доступна на сегодняшний день для наблюдения современными методами. Метагалактика состоит из галактик, пространство между которыми заполнено чрезвычайно разреженным межгалактическим газом. Оно пронизывается космическими лучами, в нем существуют гравитационные и электромагнитные поля. Одиночные галактики практически не встречаются. Как правило, они образуют скопления размерами до 106 парсек (1 пс = 3*1013км). В масштабах ~ 109пс и выше Вселенную можно считать однородной и изотропной.
Наша Галактика — Млечный Путь представляет спиралеобразное образование, сбоку напоминающее диск, в ней насчитывается порядка триллиона (1012) звезд. Диаметр этого диска 3*104 парсек. Пространство между спиральными рукавами заполнено пылью, газом, излучениями, которые составляют около 1% от массы Галактики. Галактика вращается вокруг своего оси с переменной угловой скоростью. В центре Галактики и ее спиральных рукавах интенсивно идут процессы звездообразования, достаточно часто отмечаются вспышки сверхновых звезд. Наша звезда Солнце — маленький желтый карлик — находится далеко от центра Галактики. Земля, на которой мы живем и вовсе песчинка в океане Вселенной.
Если принимать Вселенную как открытую термодинамическую систему, то везде и всюду идет глобальный процесс самоорганизации материи, модель которого описана в разделе 3. 2. 3. Ежедневно где-то гаснут старые и загораются новые звезды, рождаются и умирают планеты, рассыпается и превращается в хаос микрочастиц вещество, а потом снова организуется в зримые макротела.
Как устроена Вселенная, как живет и развивается, конечна она или бесконечна, каков ее возраст, было ли у нее начало и будет ли конец — эти вопросы издавна волновали человечество. И сегодня на большинство этих вопросов наука не может дать однозначных ответов. Несмотря на огромные достижения в исследованиях Вселенной, она лишь приоткрыла краешек занавеса, за которым скрыта ее тайна.
История науки знает множество моделей эволюции Вселенной и отдельных ее частей. К концу XIX века сформировалась убежденность в том, что Вселенная неизменна и бесконечна в пространстве и времени (стационарная космологическая модель). Для построения такой модели были использованы принципы классической механики и евклидовой геометрии.
Однако, к началу ХХ века появились данные о том, что звездные скопления и туманности не остаются на месте, а удаляются от Земли с различными скоростями. Американский астроном П. Ловелл (1855-1916) измерил лучевые скорости некоторых из них по величине красного смещения в их спектрах. Это был первый сигнал о том, что мир, в котором мы живем далек от статичности.
В начале ХХ века А. Эйнштейном была создана общая теория относительности, которая стала прародительницей нескольких моделей Вселенной.
1. Модель Шварцшильда. Возможна такая тяготеющая система, у которой все массы сосредоточены внутри сферы радиуса r; из-за мощного притяжения никакое излучение не может выйти за пределы этой сферы. У большей части звезд нашей Вселенной (за исключением черных дыр) радиус Шварцшильда меньше их размеров, вследствие чего они излучают энергию в разных диапазонах длин волн и являются видимыми. Применив теорию Эйнштейна ко всей Вселенной, Шварцшильд нашел, что она является замкнутой.
2. Модель Эйнштейна-Фридмана. Чтобы не отступать от общепринятой идеи статичности Вселенной Эйнштейну пришлось в выведенные им уравнения, описывающие ее состояние, искусственно ввести так называемую «космологическую постоянную». В начале 20-х годов русский математик А. Фридман (1888-1925), пришел к выводу: если Вселенную считать однородной и изотропной, должно наблюдаться ее непрерывное расширение или сжатие в зависимости от величины плотности материи Вселенной.
V
100
500
0 R, Мпс
Рис. 12 Зависимость скоростей галактик от их расстояний до Земли |
|
И очень скоро нашлись подтверждения этой теории. В 1925 году американский астрофизик В. Слайфер (1875-1969), измерил лучевые скорости удаления от Земли 41 галактики. В 1926 году другой американский астроном Э. Хаббл (1889-1953), наблюдая за блеском переменных звезд — цефеид, определил расстояния до других галактик. Сравнение расстояний до галактик со скоростями их удаления позволило Хабблу в 1929 году установить следующую закономерность:
V = H*R,
где V — скорость удаления галактики, R — расстояние до нее, Н — постоянная Хаббла, причем Н = 1/Т0, где Т0 — возраст Вселенной (рис. 12).
Многочисленные исследования показали, что в среднем Н = 75 км/с*Мпс, а Т0 = 20 млрд лет!.
Но, если Вселенная расширяется, то какие же размеры она имела 15-20 млрд лет назад? Что это было, и как шла эволюция Вселенной?

,
км/с