
- •В. А. Игнатова концепции современного естествознания Учебное пособие
- •Предисловие
- •I. Методические материалы к самостоятельному изучению дисциплины программа курса «концепции современного естествознания» Пояснительная записка
- •Содержание дисциплины
- •Естествознание - система наук о природе
- •2 Естественнонаучная картина мира
- •3.Основополагающие концепции современного естествознания
- •4. Некоторые приложения концепций современного естествознания
- •Тематический план изучения дисциплины
- •Темы практических занятий
- •Тема 1. Естественнонаучная картина мира
- •Вопросы, выносимые на обсуждение
- •Литература для подготовки к занятию
- •Тема 2. Основополагающие концепции современного естествознания
- •Вопросы, выносимые на обсуждение
- •Литература для подготовки к занятию
- •Методические указания по самостоятельному изучению теоретической части дисциплины
- •Методические указания по подготовке к практическим занятиям
- •Методические указания по подготовке к текущему контролю знаний и итоговой аттестации (экзамен или зачет)
- •Вопросы для самоконтроля
- •Тесты для самоконтроля
- •2. Слово «концепция» пришло из:
- •3. Принцип соответствия утверждает:
- •Критерии итоговой аттестации
- •Вопросы для размышления и творческие задания
- •Тематика контрольных работ
- •Основополагающие концепции современного естествознания
- •Системный подход к описанию окружающего мира
- •Самоорганизация и эволюция Земли
- •Перечень вопросов к итоговой аттестации
- •Ключи к тестам
- •Учебники и учебные пособия для подготовки к итоговой аттестации
- •Дополнительная литература
- •II. Теоретическая часть
- •1. Естествознание - система наук о природе
- •1.1. Природа и способы ее постижения
- •1.1.1 Природа как целостная система
- •1.1.2. Человек как познающий субъект природы
- •1.1.3. Мифология, религия, искусство, наука как компоненты культуры и способы постижения природы
- •1.1.4 Познание, мировоззрение и картина мира
- •1.1.5 Мировоззрение и культура
- •1.2 Наука и научный метод познания
- •Наука как компонент культуры
- •Наука как способ объективного познания
- •1.2.1 Наука как компонент культуры
- •1.2.2 Наука как способ объективного познания
- •1.2.3 Динамика научного познания
- •1.2.4. Научная картина мира
- •1.3 Естествознание в системе науки
- •1.3.1 Дифференциация наук
- •1.3.2 Естествознание как иерархия наук о природе
- •1.3.3. Естествознание и социальная жизнь общества
- •1.3.4 Проблема интеграции естественнонаучного и гуманитарного знания
- •2. Естественнонаучная картина мира
- •2.1 Структура естественнонаучной картины мира
- •1. Составляющие естественнонаучной картины мира
- •Фундаментальные понятия естествознания
- •2.1.1 Составляющие естественнонаучной картины мира
- •2.1.2 Фундаментальные понятия естествознания
- •1. Материя и формы ее существования: вещество и поле
- •2. Атрибуты материи: отражение и движение
- •3. Пространство и время
- •2.1.3 Фундаментальные законы природы и основополагающие принципы естествознания
- •1.Фундаментальные законы природы
- •2. Основополагающие принципы естествознания
- •2.2. Эволюция естествознания
- •Доклассический период развития науки
- •Классическая наука
- •Неклассическая наука
- •2.2.1 Доклассический период развития науки
- •1. Научные программы античности
- •2. Средневековая наука
- •2.2.2. Классическая наука
- •1.Естествознание в «Новое время»
- •2. Естествознание XIX века
- •3. Кризис классической науки
- •2.2.3 Неклассическая наука
- •1. Релятивистская картина мира
- •2. Квантово-полевая картина мира
- •3. Строение материи и физика элементарных частиц
- •4. Соотношение классической, релятивистской и квантовой картин
- •5. Постнеклассическая наука
- •3. Основополагающие концепции современного естествознания
- •3. 1 Элементы теории систем
- •3. 1. 1 Системный подход к описанию окружающего мира
- •3. 1. 2 Классификации социоприродных систем
- •3. 1. 3 Свойства открытых систем
- •3. 1. 4 Системная модель мира
- •3. 2 Самоорганизация и эволюция сложных систем, далеких от равновесия
- •Общие представления
- •Роль случайного в поведении сложных систем
- •Синергетическая картина мира и универсальный эволюционизм
- •3. 2. 1 Общие представления
- •3. 2. 2 Роль случайного в поведении сложных систем
- •3. 2. 3 Элементы теории самоорганизации систем
- •1. Фазовое пространство и фазовые траектории
- •2. Точка бифуркации
- •3. Фракталы и аттракторы
- •4. Сценарий самоорганизации сложных систем
- •3. 2. 4 Синергетическая картина мира и универсальный эволюционизм
- •1. Синергетическая картина мира
- •2. Универсальный эволюционизм
- •3. 3 Элементы теории управления
- •1. Самоорганизация и организация
- •Контур с обратной связью
- •Управленческая деятельность
- •3. 3. 1 Самоорганизация и организация
- •3.3.2. Контур с обратной связью
- •3.3.3. Управленческая деятельность
- •3. 4 Некоторые приложения концепций современного естествознания
- •3. 4. 1 Самоорганизация и эволюция вселенной
- •1. Структура Вселенной
- •2. Гипотеза Большого Взрыва
- •3. Образование галактик
- •4. Химическая эволюция
- •5. Будущее Вселенной
- •3. 4. 2 Эволюция звезд и звездно-планетных систем
- •1. Эволюция звезд
- •2. Солнце
- •3. Планеты Солнечной системы
- •3. 4. 3 Самоорганизация и эволюция земли
- •1. Общая характеристика планеты
- •2. Физические оболочки Земли
- •3. Геосфера
- •4. Биосфера
- •3. 4. 4 Самоорганизация и эволюция живого вещества
- •1. Общие представления
- •2. Гипотезы о происхождении жизни на Земле
- •3. Биологическая эволюция и концепция генетики
- •4. Антропный принцип и проблемы происхождения жизни
- •3. 4. 5 Самоорганизация и антропогенез
- •1. Природа человека
- •2. Современные представления о происхождении и эволюции человека
- •3. Эволюция головного мозга и развитие психики
- •Генетическая программа человека и природа интеллектуальных способностей
- •3. 4. 6 Самоорганизация, организация и социогенез
- •1. Краткий исторический экскурс
- •2. Системно-синергетический подход к описанию социальных систем
- •3. Антропосоциогенез и формирование глобальных экологических проблем
- •4. Новые цивилизационные модели и перспективы человека
- •Заключение
- •Глоссарий
1.2.3 Динамика научного познания
В начальный период становления науки происходило медленное увеличение объема накапливаемых ею знаний. Но уже к середине XIX наблюдается его удвоение через каждые пятьдесят лет. Сегодня, в эпоху научно-технической революции (НТР), удвоение происходит каждые полтора года. Свыше 90% всех научно-технических открытий и изобретений приходится на ХХ век. Увеличение количества информации (лат. informatio - разъяснение, изложение; совокупность сведений) неизменно сопровождается и изменением ее качества, накоплением новой информации и появлением у человека новых способностей и возможностей ее эмпирического и теоретического обобщения. Это определяет горизонт познания, присущий той или иной культурно-исторической эпохе. Он изменчив и подвижен, его передний край непрерывно входит в те сферы, где накапливаются факты, объяснение которых лежит за пределами возможностей существующих теорий и выше общепринятого понимания. Их интерпретация требует разработки новых инструментов познания (более тонкой аппаратуры, новых методов исследования, форм и способов обобщения), что неизбежно ведет к расширению горизонта познания, смене научных представлений, замене простых теорий более сложными.
Есть ли предел познанию, существует ли окончательная теория и то универсальное знание, которое способно объяснить все - эти вопросы постоянно находятся в поле зрения методологии и теории познания. Ответы на них перекрываются с проблемой поиска объективной научной истины и возможности существования абсолютной научной истины.
Объективная истина- это знание, которое адекватно отражает свойства объекта познания и закономерности его развития. Раскрыть ее - значит отделить знание от заблуждения, установить закономерности развития объекта и его взаимосвязи, отражающие действительное положение вещей. Она не зависит от познающего субъекта и его субъективного мнения. Ее достоверность доказывается практическим опытом человечества.
Абсолютная научная истина, как точное и полное отражение действительности, есть некий недостижимый идеал, ибо сама действительность бесконечно сложна, многомерна, находится в постоянном движении и изменении, а то, что доступно нам для наблюдения, и мы сами, всего лишь ее небольшая часть. Подвижность и изменчивость мира объективно обуславливают подвижность и изменчивость наших представлений о нем. Но динамика развития наших представлений отстает от динамики развития мира. Ибо развитие мира носит опережающий характер. Это и обуславливает принципиальную незавершенность науки и научной картины мира. И даже установленные наукой фундаментальные законы и принципы природы или построенные ею модели справедливы лишь в определенных границах. Чем глубже человек проникает в бездны природы, тем больше ощущает свою беспомощность перед необозримостью ее границ и пониманием ограниченности своих познавательных возможностей. Очевидно, необходимо идти не в направлении бесконечного расширения границ познания, к чему стремится современная наука, следуя античной натурфилософии в поисках первокирпичиков Мироздания. Скорее всего, нужно искать некое внутреннее равновесие, «вещей связующую нить», к которым так стремится восточная философия. Попытки установить абсолютную истину в познании природы крупный ученый, лауреат Нобелевской премии по физике, наш современник Стивен Вайнберг образно назвал мечтой об окончательной теории.
В общем случае объективная истина относительна, ее абсолютность справедлива лишь в определенных граничных условиях. Но это не значит, что мир непознаваем. Это означает лишь то, что в процессе освоения действительности происходит углубление познания, расширяются его границы, и этот процесс бесконечен, ибо бесконечна сама Природа. И правильнее было бы говорить не об истине, а об уровне понимания мира, который складывается на том или ином этапе развития науки.
Как совершаются научные открытия, есть ли какие-то закономерности их появления и можно ли их спланировать? В истории познания предпринимались неоднократные попытки ответить на эти вопросы и выявить законы и механизмы развития науки. На этот счет существует несколько точек зрения. Одной из наиболее распространенных сегодня является точка зрения, представленная в работе американского историка науки, профессора Т.Куна «Структура научных революций». В ней он утверждает, что развитие науки во многом случайный процесс, в котором периоды эволюционного развития сменяются революционными скачками. Революционный скачок заключается в смене научных парадигм (греч. paradeigma- пример, образец). Парадигма по Куну - это модель постановки проблемы и ее решения, исходная концептуальная схема, лежащая в ее основе, совокупность фундаментальных научных теорий и стиль мышления, разработанные в рамках этой схемы, которые разделяют члены какого-либо научного сообщества.
В период подъема и спокойного развития идет накопление научных данных и их осмысление. Но вдруг появляются такие факты, которые оказываются необъяснимыми в рамках уже существующей теории. Их количество накапливается, они вступают в противоречие с ее исходными положениями. Итогом разрешения противоречия, как правило, является научная революция, проявляющаяся в смене концептуальных моделей и сопровождающаяся качественным скачком в научном мышлении. При этом происходит смена аксиоматического аппарата, низвергаются старые принципы, понятия, методы исследования, выдвигаются новые концептуальные идеи, изменяются представления о мире. Когда теоретические выводы складываются в целостную непротиворечивую систему знаний, говорят о рождении новой научной парадигмы.
Вся история науки - это череда научных революций, непрерывная смена научных представлений, парадигм и научных картин. Например, появление книги Н.Коперника «Обращение небесных сфер» (1543г.) послужило началом революции (переход от геоцентрической к гелиоцентрической системе). Или: работы Казанской лингвистической школы (И.А.Бодуэн де Куртене, Н.В.Крушевский и др.) о языке как динамической развивающейся системе, единстве синхронии и диахронии послужили основанием для новой парадигмы в гуманитарных науках - формированию структурализма (использование структурного метода, моделирование, формализация и математизация). Или сегодня, на рубеже II и III тысячелетий, когда человечество в своем развитии подошло к пределу возможностей биосферы, формируется новая парадигма выживания, которая отражается в концепциях (лат. conteptio - понимание; определенный способ трактовки каких-либо явлений, основная точка зрения, руководящая идея для их освещения, ведущий замысел, совокупность основополагающих идей) и моделях устойчивого развития.
Смена парадигм, научных теорий, познавательных моделей или картин мира - объективный процесс. Еще в 1931 году американский математик и логик К.Гедель доказал теорему о том, что в любой теории, какой бы стройной и самостоятельной она ни была, обязательно есть внутренние противоречия и вопросы, на которые она не имеет однозначного ответа. В процессе разрешения этих противоречий и рождается новое. При этом более совершенные теории и модели, как правило, в качестве частного случая включают предшествующие, а взаимосвязь между ними осуществляется посредством одного из фундаментальных принципов познания, о котором мы уже говорили - принципа соответствия.
Как правило, накануне научно-технических революций наблюдается взрыв в развитии гуманитарной культуры. Подтверждением этому является весь культурно-исторический процесс. Становлению механистической парадигмы предшествовала эпохи Возрождения и Реформации, промышленной революции начала XIX века - эпоха Просвещения, революции в естествознании начала XX века - взрыв гуманитарной культуры конца XIX века. Создается впечатление, что логичная наука, накапливая противоречивые данные, еще и не обращает на них серьезного внимания, а интуиция философа, художника, поэта как будто загодя, улавливает незримые флюиды грядущих перемен в мировоззрении.
Новые понятия и термины: горизонт познания, объективная истина, динамика, парадигма, концепция, научная революция.
Ведущие идеи:
- динамизм научного познания;
- смена научных парадигм как объективный процесс;
- объективность и относительность научной истины;
- принципиальная недостижимость абсолютной истины и незавершенность научной картины мира.