- •3. Конспект лекций по дисциплине
- •1. Яблонский а.А. Курс теоретической механики. Ч. 1, «Высшая школа», с-Птб.: 2002 и предшествующие издания.
- •2. Бать м.И., Джанелидзе г.Ю., Кельзон а.С. Теоретическая механика в примерах и задачах. Ч.1 и 2. М., 1961 и последующие издания
- •1. Яблонский а.А. Курс теоретической механики. Ч. 1, «Высшая школа», с-Птб.: 2002 и предшествующие издания.
- •2. Бать м.И., Джанелидзе г.Ю., Кельзон а.С. Теоретическая механика в примерах и задачах. Ч.1 и 2. М., 1961 и последующие издания.
- •1. Яблонский а.А. Курс теоретической механики. Ч. 1 и 2, «Высшая школа», с-Птб.: 2002 и предшествующие издания.
- •2. Бать м.И., Джанелидзе г.Ю., Кельзон а.С. Теоретическая механика в примерах и задачах. Ч.1 и 2. М., 1961 и последующие издания
- •1. Яблонский а.А. Курс теоретической механики. Ч. 1, «Высшая школа», с-Птб.: 2002 и предшествующие издания.
- •2. Бать м.И., Джанелидзе г.Ю., Кельзон а.С. Теоретическая механика в примерах и задачах. Ч.1 и 2. М., 1961 и последующие издания
- •Лекция 5. Кинематика точки
- •1 Яблонский а.А. Курс теоретической механики. Ч. 1, «Высшая школа», с-Птб.: 2002 и предшествующие издания.
- •2. Лойцянский л.Г и Лурье а.И. Курс теоретической механики. Том I. "Высшая школа", м.:2000 г.
- •3. Бать м.И., Джанелидзе г.Ю., Кельзон а.С. Теоретическая механика в примерах и задачах. Ч.1 и 2. М., 1961 и последующие издания
- •1. Яблонский а.А. Курс теоретической механики. Ч. 1 и 2, «Высшая школа», с-Птб.: 2002 и предшествующие издания.
- •2. М.И Бать, г.Ю. Джанелидзе, а.С. Кельзон Теоретическая механика в примерах и задачах, 1 часть, Москва,1975 – 286-300с.
- •1. Яблонский а.А. Курс теоретической механики. Ч. 1, «Высшая школа», с-Птб.: 2002 и предшествующие издания.
- •2. Бать м.И., Джанелидзе г.Ю., Кельзон а.С. Теоретическая механика в примерах и задачах. Ч.1 и 2. М., 1961 и последующие издания
- •1. Яблонский а.А. Курс теоретической механики. Ч. 1 и 2, «Высшая школа», с-Птб.: 2002 и предшествующие издания.
- •2. Бать м.И., Джанелидзе г.Ю., Кельзон а.С. Теоретическая механика в примерах и задачах. Ч.1 и 2. М., 1961 и последующие издания
- •Яблонский а.А. Курс теоретической механики. Ч. 2, «Высшая школа», с-Птб.: 2002 и предшествующие издания.
- •2. Бать м.И., Джанелидзе г.Ю., Кельзон а.С. Теоретическая механика в примерах и задачах. Ч.1 и 2. М., 1961 и последующие издания
- •Яблонский а.А. Курс теоретической механики. Ч. 2, «Высшая школа», с-Птб.: 2002 и предшествующие издания.
- •2. Бать м.И., Джанелидзе г.Ю., Кельзон а.С. Теоретическая механика в примерах и задачах. Ч.1 и 2. М., 1961 и последующие издания
- •1. Яблонский а.А. Курс теоретической механики. Ч. 2, «Высшая школа», с-Птб.: 2002 и предшествующие издания.
- •2. Бать м.И., Джанелидзе г.Ю., Кельзон а.С. Теоретическая механика в примерах и задачах. Ч.1 и 2. М., 1961 и последующие издания
- •1 Яблонский а.А. Курс теоретической механики. Ч. 2, «Высшая школа», с-Птб.: 2002 и предшествующие издания.
- •2. Бать м.И., Джанелидзе г.Ю., Кельзон а.С. Теоретическая механика в примерах и задачах. Ч.1 и 2. М., 1961 и последующие издания
- •1. Яблонский а.А. Курс теоретической механики. Ч 2, «Высшая школа», с-Птб.: 2002 и предшествующие издания.
- •2. Бать м.И., Джанелидзе г.Ю., Кельзон а.С. Теоретическая механика в примерах и задачах. Ч.1 и 2. М., 1961 и последующие издания
- •1. Яблонский а.А. Курс теоретической механики. Ч 2, «Высшая школа», с-Птб.: 2002 и предшествующие издания.
- •2. Бать м.И., Джанелидзе г.Ю., Кельзон а.С. Теоретическая механика в примерах и задачах. Ч.1 и 2. М., 1961 и последующие издания
- •1. Яблонский а.А. Курс теоретической механики. Ч 2, «Высшая школа», с-Птб.: 2002 и предшествующие издания.
- •2. Бать м.И., Джанелидзе г.Ю., Кельзон а.С. Теоретическая механика в примерах и задачах. Ч.1 и 2. М., 1961 и последующие издания
1. Яблонский а.А. Курс теоретической механики. Ч 2, «Высшая школа», с-Птб.: 2002 и предшествующие издания.
2. Бать м.И., Джанелидзе г.Ю., Кельзон а.С. Теоретическая механика в примерах и задачах. Ч.1 и 2. М., 1961 и последующие издания
Контрольные задания для СРС – 1) Влияют ли внутренние силы системы на изменение ее кинетической энергии? 2) В каких механических системах сумма работ внутренних сил равна нулю?
Лекция 14. Теорема об изменении количества движения
Цель лекции - изложить теорему об изменении количества движения для материальной точки и механической системы
План лекции
Количество движения материальной точки и механической системы. Элементарный и полный импульс силы
Теорема об изменении количества движения
КРАТКОЕ СОДЕРЖАНИЕ ЛЕКЦИИ
Количеством движения материальной точки называется векторная величина, равная произведению массы точки на вектор ее скорости
.
Количеством
движения механической системы
называется
вектор
,
равный
геометрической сумме количеств движения
всех точек системы:
Вектор является свободным вектором. Единица измерения в системе СИ – 1кг ∙м/с. Используя понятие центра масс механической системы, количество движения системы представим в виде:
.
Элементарным импульсом силы за элементарный промежуток времени называется векторная величина, равная
.
Полный
импульс силы
за
конечный промежуток времени
равен:
.
Единица измерения импульса силы – Ньютон ∙ секунда (Н∙ с).
,
где
- конечная
и начальная скорости точки;
- полный
импульс силы за время
.
Это
уравнение выражает теорему об изменении
количества движения точки: изменение
количества движения точки за некоторый
промежуток времени равно импульсу
действующей на точку силы за этот же
промежуток времени.
Для механической системы будем иметь:
.
Это уравнение выражает теорему об изменении количества движения системы в дифференциальной форме: производная по времени от количества движения системы равна геометрической сумме всех внешних сил, действующих на систему.
Умножая обе части уравнения на dt, получим:
,
т.е., дифференциал количества движения механической системы равен геометрической сумме элементарных импульсов всех внешних сил, действующих на систему.
Интегрируя уравнение в заданных пределах, получим:
,
или
,
где
-
количества
движения системы в начальный и конечный
моменты времени.
Последнее уравнение выражает теорему об изменении количества движения системы в интегральной форме: изменение количества движения системы за какое-либо время равно сумме импульсов всех внешних сил, действующих на систему, за это же время .
Теорема допускает первый интеграл (закон сохранения) в случае, если геометрическая сумма всех внешних сил равна нулю:
.
Тогда
вектор количества движения системы
будет постоянен по модулю и по направлению:
.
ГЛОССАРИЙ
Нүктенiң (жүйенiң) қозғалыс мөлшерi |
Количество движения точки (системы) |
Momentum of particle (system) |
Қандай да бiр уақыт аралығындағы күш импульсi |
Импульс силы за конечный промежуток времени |
Whole force |
Рекомендуемая литература
