- •Оглавление
- •Рекомендации по изучению дисциплины
- •Введение
- •Лекция 1.Физико-химические основы горения
- •1.1. Основные понятия и определения
- •1.2. Состав топлива
- •1.3. Теплота сгорания топлива
- •1.4. Расход воздуха для горения топлива и выход продуктов сгорания
- •1.5 Температура горения
- •Лекция 2. Кинетика химических реакций горения.
- •2.1. Цепные реакции
- •2.2. Стационарное протекание реакции горения
- •Лекция 3. Самовоспламенение и зажигание
- •Лекция 4. Процессы распространения пламени
- •4.1. Ламинарное горение
- •4.2.Турбулентное горение
- •4.3. Распространение пламени при детонации
- •Контрольные вопросы
- •Лекция 5. Горение газообразного топлива
- •5.1. Горение предварительно подготовленной однородной газовой смеси
- •5.2. Горение при раздельной подаче в зону горения горючего и окислителя
- •5.3. Горение при предварительном смешении газа с частью воздуха
- •5.4. Пределы устойчивости горения ламинарного факела и искусственная стабилизация пламени при турбулентном режиме движения
- •Лекция 6. Горение жидкого топлива
- •6.1. Горение жидких топлив, имеющих свободную поверхность
- •6.2. Горение капли жидкого топлива
- •6.3. Сжигание жидкого топлива в факеле
- •Лекция 7. Горение твердого топлива
- •7.1. Физические и химические явления в процессе горения частиц твердого топлива
- •7.2. Горение пылевидного топлива в факеле
- •7.3. Горение твердого топлива в слое
- •Лекция 8. Горение и загрязнение атмосферы
- •Лекция 9. Общая характеристика взрывных явлений
- •9.1. Источники энергии взрывов и их параметры
- •9.2. Взрывные волны и их характеристики
- •Контрольные вопросы
- •Лекция 10. Случайные взрывы на объектах экономики
- •10.1. Конденсированные взрывчатые вещества
- •10.2. Сжатые газы
- •10.3. Взрывоопасные парогазовые смеси
- •10.4. Перегретые жидкости
- •10.5. Пылевоздушные смеси
- •Контрольные вопросы
- •Лекция 11. Использование преднамеренных взрывов на объектах экономики
- •Контрольные вопросы для экзамена по тгв
- •Список литературы для подготовки в экзамену
9.2. Взрывные волны и их характеристики
При взрывах как конденсированных, так и парогазовых сред и аэровзвесей в воздухе происходит быстрое изменение давления, плотности, температуры и массовой скорости. При этом наиболее достоверно определяются характеристики невозмущенных каким-либо препятствием взрывных волн в воздухе. Такие волны называются падающими или проходящими.
В результате больших значений плотности заряда (1,3-5 г/cм3) и энергосодержания единицы массы конденсированных взрывчатых веществ выделение всей энергии при взрыве происходит практически мгновенно в небольшом объеме при плотности продуктов взрыва 1,4- 1,6 г/см3, что способствует образованию сильных ударных волн.
Взрывы большинства конденсированных взрывчатых веществ протекают в режиме детонации, при котором взрывная волна распространяется с постоянной скоростью при данных плотности и форме заряда. Значения скоростей детонации находятся в пределах от 1 км/с для некоторых промышленных взрывчатых веществ до 8 км/с для мощных типичных взрывчатых веществ. При этом давления взрывов достигают 20-38 ГПа.
Взрывные волны, генерируемые взрывами парогазовых и дисперсных сред, вследствие малых плотности и удельной объемной энергоемкости и других особенностей процессов горения характеризуются более низкими параметрами.
При спокойном гетерогенном двухфазном диффузионном горении, когда продолжительность химической реакции мала, скорость горения определяется скоростью диффузии кислорода к горючему веществу в зону горения. Пожары в большинстве случаев – это диффузионное горение, при котором в незамкнутых объемах взрыва не происходит.
В перемешанных газовых смесях, аэровзвесях и других смесях, в которых могут протекать гомогенные экзотермические реакции, при определенных условиях взрывные волны распространяются в виде самоподдерживающейся волны горения (пламени) с звуковой скоростью.
В реальных условиях горения парогазовых смесей скорости распространения пламени достигают десятки и сотни метров в секунду, но не превышают скорость распространения звука в данной среде. В этом случае происходит взрывное, или дефлаграционное, горение.
Применительно к случайным промышленным взрывам под дефлаграцией обычно понимают горение облака с видимой скоростью порядка 100-300 м/с, при которой генерируются ударные волны с максимальным давлением 20-100 кПа.
В определенных условиях дефлаграционное (взрывное) горение может перейти в детонационный процесс, при котором скорость распространения пламени превышает скорость распространения звука и достигает 1-5 км/с. Это происходит часто вследствие турбулизации материальных потоков, которая вызывает сильное искривление и большое увеличение поверхности фронта пламени. При этом возникает ударная волна, во фронте которой резко повышаются плотность, давление и температура смеси. При возрастании этих параметров смеси до самовоспламенения горючего вещества возникает детонационная волна, являющаяся результатом сложения ударной волны и образующейся зоны сжатой, быстро реагирующей (самовоспламеняющейся смеси). Важно отметить, что скорость распространения детонационной волны и давление в ней не зависят от скорости реакции в пламени, а определяются ее тепловым эффектом и теплоемкостью продуктов сгорания.
В процессах взрыва и детонации парогазовых сред взрывные волны достигают высоких параметров , характеризующих их разрушающую способность. Так, избыточное давление в пределах детонирующего облака составляет несколько МПа. Большинство же промышленных зданий разрушается от значительно меньших давлений: 25-30 кПа при внешних и 20-25 кПа при внутренних взрывах. Разрушающая способность взрывов парогазовых смесей и аэровзвесей при определенных условиях в промышленности оказывается сопоставимой со взрывами типичных взрывчатых веществ, применяемых в военных целях, поскольку по теплоте сгорания большинство углеводородов в 10 раз превосходит тротил.
Следует иметь в виду, что при детонационном режиме горения парогазового облака большая часть энергии взрыва переходит в ударную волну. При дефлаграционном горении со скоростью распространения пламени около 200 м/с переход энергии в ударную волну составляет около 30%, в то же время максимальный КПД энергии взрыва парогазовых сред составляет около 40%.
К основным параметрам, характеризующим разрушающую способность взрывной волны, относятся избыточное давление и импульс взрыва. На рис. 9.1 представлена структура невозмущенной каким-либо препятствием взрывной волны в воздухе.
Рис. 9.1. Структура идеальной взрывной волны:
1- положительная фаза;
2 – отрицательная фаза (волна разрежения)
Здесь pо – давление окружающей среды до прихода взрывной волны. В момент tа прихода взрывной волны давление резко повышается до максимального ps+ + pо. Затем давление падает до давления окружающей среды за время t+ и продолжает снижаться до величины pо – ps-, возвращаясь впоследствии к исходному давлению pо за общее время
t = tа + t+ + t-.
Величина ps+ представляет собой максимальное невозмущенное избыточное давление или просто как амплитуда избыточного давления. Область взрывной волны, давление в которой превышает давление окружающей среды, называют положительной фазой, ее продолжительность t+. А область, где давление меньше исходного, называется отрицательной фазой или фазой разрежения с продолжительностью t- и амплитудой ps-.
Важнейшими параметрами взрывной волны являются положительные is+ и отрицательные is- удельные импульсы, определяемые как функции времени амплитуд избыточного давления, отнесенного к единице поверхности:
tа + t+
is+ = ∫ [p(t) – pо] dt,
tа
tа + t++t-
is- = ∫ pо– p(t)] dt.
tа +t+
В большинстве случаев определяют параметры взрывной волны, связанные с положительной фазой. Однако иногда (например, при взрывах сосудов со сжатыми газами) параметры отрицательной фазы достигают высоких значений и важны при оценке разрушающей способности взрывной волны.
В области положительной фазы используются другие параметры ударных волн, наиболее важными из которых являются плотность ρ и массовая скорость газа u за волной, скорость ударной волны v, динамическое давление q = ρu2/2. Последний показатель наиболее важен для оценки разрушающей способности ударной волны.
В момент взрыва потенциальная энергия источника переходит как в тепловую и кинетическую энергию различных областей и фрагментов системы, так и в энергию излучения. Энергия взрывной волны как движущейся части газовой среды складывается из тепловой энергии
Ет = ∫vρс(t – to)
и кинетической энергии
Ек = 1/2 ∫vρu2dV,
где ρ – плотность;
с – теплоемкость;
t0 и t – начальная и конечная температура;
V – объем волны.
На поздней стадии развития процесса суммарная энергия ударной волны Е = Ет + Ек оказывается величиной постоянной и не изменяется во времени.
Переход энергии взрыва в энергию излучения существенен и учитывается только при атомных взрывах.
По уравнению энергетического баланса ударной волны с учетом конкретных условий определяют реально возможный тротиловый эквивалент.
Для определения радиусов Ri зон интенсивности воздействия ударной волны (расстояние до объекта с соответствующим уровнем разрушения) при взрыве пользуются формулой, приведенной в общих правилах взрывобезопасности
Ri = Кi 3 W/ [1 + (3180/W)2]1/6,
где W – тротиловый эквивалент, кг;
Кi – коэффициент пропорциональности, соответствующий определенной зоне интенсивности ударной волны (таблица 9.3).
Таблица 9.3
-
Зона
Кi
Избыточное
давление на
фронте ударной волны,
кПа
Степень разрушения сооружений и зданий
Травмирующее воздействие на людей
1
3,8
≥100
Полное разрушение
Смертельное
2
5,6
70
Частичное разрушение
Смертельное
3
9,6
28
Здания непригодны для обитания
Тяжелое
4
28,0
14
Разрушение остекления, дверных и оконных переплетов
Средней
тяжести
5
56,0
2
Разрушение до 5% остекления
Легкое
