
- •Оглавление
- •Рекомендации по изучению дисциплины
- •Введение
- •Лекция 1.Физико-химические основы горения
- •1.1. Основные понятия и определения
- •1.2. Состав топлива
- •1.3. Теплота сгорания топлива
- •1.4. Расход воздуха для горения топлива и выход продуктов сгорания
- •1.5 Температура горения
- •Лекция 2. Кинетика химических реакций горения.
- •2.1. Цепные реакции
- •2.2. Стационарное протекание реакции горения
- •Лекция 3. Самовоспламенение и зажигание
- •Лекция 4. Процессы распространения пламени
- •4.1. Ламинарное горение
- •4.2.Турбулентное горение
- •4.3. Распространение пламени при детонации
- •Контрольные вопросы
- •Лекция 5. Горение газообразного топлива
- •5.1. Горение предварительно подготовленной однородной газовой смеси
- •5.2. Горение при раздельной подаче в зону горения горючего и окислителя
- •5.3. Горение при предварительном смешении газа с частью воздуха
- •5.4. Пределы устойчивости горения ламинарного факела и искусственная стабилизация пламени при турбулентном режиме движения
- •Лекция 6. Горение жидкого топлива
- •6.1. Горение жидких топлив, имеющих свободную поверхность
- •6.2. Горение капли жидкого топлива
- •6.3. Сжигание жидкого топлива в факеле
- •Лекция 7. Горение твердого топлива
- •7.1. Физические и химические явления в процессе горения частиц твердого топлива
- •7.2. Горение пылевидного топлива в факеле
- •7.3. Горение твердого топлива в слое
- •Лекция 8. Горение и загрязнение атмосферы
- •Лекция 9. Общая характеристика взрывных явлений
- •9.1. Источники энергии взрывов и их параметры
- •9.2. Взрывные волны и их характеристики
- •Контрольные вопросы
- •Лекция 10. Случайные взрывы на объектах экономики
- •10.1. Конденсированные взрывчатые вещества
- •10.2. Сжатые газы
- •10.3. Взрывоопасные парогазовые смеси
- •10.4. Перегретые жидкости
- •10.5. Пылевоздушные смеси
- •Контрольные вопросы
- •Лекция 11. Использование преднамеренных взрывов на объектах экономики
- •Контрольные вопросы для экзамена по тгв
- •Список литературы для подготовки в экзамену
4.3. Распространение пламени при детонации
Детонация
– процесс химического превращения
взрывчатого вещества, сопровождающийся
освобождением энергии и распространяющийся
по веществу в виде волны от одного слоя
к другому со сверхзвуковой скоростью.
Химическая реакция вводится интенсивной
ударной волной, образующей передний
фронт детонационной волны. Давление,
которое создается при распространении
детонационной волны в газообразных
взрывчатых смесях, составляет десятки
атмосфер, а в жидких и твердых взрывчатых
веществах измеряется сотнями тысяч
атмосфер. Благодаря резкому повышению
температуры и давления за фронтом
ударной волны химическое превращение
протекает чрезвычайно быстро в очень
тонко слое, непосредственно прилегающем
к фронту волны (рис. 4.4).
Рис. 4.4. Схема детонационной волны:
А – фронт ударной волны; заштрихованная область – зона химической реакции. Стрелкой показано направление распространения волны
Энергия освобождающаяся в зоне химической реакции, непрерывно поддерживает высокое давление в ударной волне. Таким образом, детонация представляет собой самоподдерживающийся процесс.
Возбуждение детонации является обычным способом осуществления взрывов. Детонация в заряде взрывчатого вещества создается интенсивным механическим или тепловым воздействием (удар, искровой разряд, взрыв металлической проволочки под действием электрического тока и т.п.). Сила воздействия, необходимого для возбуждения детонации, зависит от химической природы взрывчатого вещества. К механическому воздействию чувствительны, например, так называемые инициирующие взрывчатые вещества (гремучая ртуть, азид свинца и др.), которые обычно входят в состав капсюлей-детонаторов, используемых для возбуждения детонации вторичных менее чувствительных взрывчатых веществ.
В газообразных горючих смесях распространение детонации возможно лишь при условиях, когда концентрация горючего газа (или паров горючей жидкости) находится в определенных пределах. Эти пределы зависят от химической природы горючей смеси, давления и температуры. Например, в смеси водорода с кислородом при комнатной температуре и атмосферном давлении волна детонации способна распространяться, если концентрация (по объему) водорода находится в пределах от 20% до 90%. Скорости детонации некоторых взрывчатых веществ приведены в таблице 4.2.
Детонация моторных топлив наблюдается в поршневых двигателях внутреннего сгорания с искровым зажиганием и возникает в результате образования и накопления в топливном заряде органических перекисей, являющихся первичными продуктами окисления углеводородного топлива. Если при этом достигается некоторая критическая концентрация перекисей в смеси, то происходит детонация, характеризующаяся необычно высокой скоростью распространения пламени и возникновением ударной волны. При нормальной работе двигателя пламя распространяется со скоростью 10 – 20 м/с, В то время как при детонации – со скоростью 1500-2500 м/с.
Таблица 4.2.
Скорость детонации некоторых взрывчатых веществ
Вещество |
Скорость детонационной волны, м/с |
2Н2 + О2 (газовая смесь водорода с кислородом) |
2820 |
СН4 + 2О2 (газовая смесь метана скислородом) |
2320 |
Нитроглицерин, С3Н5(ОNО2)3 (жидкость, плотность ρ =1,60 г/см3) |
7750 |
Тринитротолуол (тротил, тол), С7Н5(NО2)3СН3 (твердое вещество, ρ =1,62 г/см3 ) |
6950 |
Циклотриметилентринитроамин (гексоген), С3Н6О6N6 (твердое вещество, ρ =1,80 г/см3 ) |
8850 |
Детонация моторных топлив проявляется в металлических «стуках», дымном выхлопе, вибрации и перегреве двигателя и ведет к пригоранию колец, прогоранию поршней и клапанов, разрушению подшипников, потере мощности двигателя.
Следовательно при горении топливно-воздушной смеси в карбюраторных двигателях внутреннего сгорания детонация недопустима. В связи с этим подбираются такие условия горения и химический состав используемых веществ, чтобы возникновение детонации с характерным для нее чрезвычайно резким повышением давления было исключено.
Возникновение и интенсивность детонации моторных топлив зависят от режима работы и особенностей конструкции двигателя и химического состава топлива. Горючие, содержащие много неразветвленных парафиновых углеводородов, детонируют легче, чем содержащие разветвленные парафиновые и ароматические углеводороды, стойкие к детонации. Детонационная стойкость отдельных компонентов топлив зависит от состава топливно-воздушной смеси (бедные или богатые смеси).
Детонационную стойкость бензинов для бедных смесей характеризуют октановым числом, для богатых смесей – сортностью бензинов. Стойкость бензинов к детонации повышается при применении антидетонаторов, например тетраэтилсвинца.