
- •Физико-химические процессы горения и взрыва
- •Часть 2 Взрывчатые вещества и смеси Практикум
- •Практикум составлен л. В. Куслиной, и.В. Машевской.
- •Оглавление
- •Введение
- •Глава 1. Взрывчатые вещества
- •Характеристика взрывчатых веществ
- •1.2. Классификация взрывчатых веществ (вв)
- •По составу
- •По физическому состоянию
- •По форме работы взрыва
- •По методу приготовления зарядов
- •По направлениям применения
- •1.3. Виды взрывов на взрывоопасных объектах (воо).
- •Глава 2. Взрывы паровоздушных и газовоздушных смесей
- •2.1. Параметры взрыва парогазовых смесей
- •2.2. Расчет максимального давления взрыва парогазовых смесей [2]
- •Расчет тротилового эквивалента взрыва и безопасного расстояния по действию воздушных ударных волн
- •Методики оценки зон разрушений при взрывах газо-воздушных смесей (гвс).
- •Взрывы гвс в открытой атмосфере [9,10]
- •Вторая методика расчета параметров зоны чс (разрушений)
- •Задания для самостоятельной работы
- •Взрывы гвс в замкнутых объемах
- •Задания для самостоятельной работы
- •2.5 Прогнозирование последствий взрывов газопаровоздушных смесей (гпвс) в производственных помещениях (третья методика) [16]
- •2.6 Взрывы газопаровоздушных смесей
- •Характеристики газопаровоздушных смесей
- •Взрывы пылевоздушных смесей (пвс)
- •Пример 1. В цехе по переработке полиэтилена при разгерметизации технологического блока возможно поступление пыли в помещение.
- •Задание для самостоятельной работы в цехе по переработке материалов при разгерметизации технологического блока возможно поступление пыли в помещение.
- •2.8 Взрывы при аварийной разгерметизации магистрального газопровода
- •Глава 3. Взрывы конденсированных взрывчатых веществ.
- •3.1 Прогнозирование обстановки при авариях со взрывом на пожароопасных объектах
- •Показатели инженерной обстановки
- •Список литературы
- •Теплосодержание некоторых веществ
- •Энтальпия (теплосодержание) газов при постоянном давлении
- •Теплота образования и сгорания некоторых веществ
- •Показатели пожарной опасности некоторых газов
- •Показатели пожарной опасности некоторых жидкостей
- •Величины параметров к и l для вычисления температурных пределов воспламенения некоторых жидкостей
- •Давление насыщенных паров некоторых веществ, гПа
- •Температура самовоспламенения, к некоторых ароматических соединений
- •Температура самовоспламенения, к некоторых предельных одноатомных спиртов в зависимости от средней длины углеродной цепи
- •Значение параметров разбавленной смеси
- •Вопросы для подготовки к экзамену по т г в (заочное отделение)
Методики оценки зон разрушений при взрывах газо-воздушных смесей (гвс).
Рассмотрим упрощенные методики решения типовых задач при взрывах на взрывоопасных объектах (ВОО) [10, 12,13]. В работах [6, 9,10] рассмотрены методики:
При взрыве газо- и паровоздушных углеводородных веществ [9];
При взрывах пылевоздушных смесей и аэрозолей.
Так как для взрывоопасных объектов экономики (ОЭ) наиболее характерны аварии с выбросом газо- и паровоздушных смесей углеводородных веществ с образованием детонационных взрывов, то ниже даются методики оценки зон разрушений именно для этих случаев.
Такие взрывы могут происходить в неограниченном (открытая атмосфера) и ограниченном (в замкнутом объеме) пространстве в результате разрушений газопроводов, разлива сжиженного горючего газа, его испарения, неисправностей технологической аппаратуры, трубопроводов, утечек газа в помещениях и т.д. При этом имеют место детонационные взрывы [7, 10, 9, 14].
К ГВС относят: метан, пропан, бутан, этилен, пропилен, бутилен и др.
Взрывы гвс в открытой атмосфере [9,10]
Существуют различные методики расчета, но все они основаны на принципе подобия Хопкинсона и подчинены закону «кубического корня». В практике широко используют две методики, которые дают достоверные результаты.
Первая методика определения параметров зон разрушения.
Это упрощенная и достаточно объективная методика, рассмотренная в работах [9, 10]. На основе анализа и обобщения материалов аварий со взрывом ГВС в очаге поражения (взрыва) на открытой местности (атмосфере) выделяют две зоны: детонации (детонационной волны); распространения (действия) ударной волны (УВ).
Условный (расчетный) радиус зоны детонации (детонационной волны) r0 определяют по эмпирической формуле:
r0=18.5·
(2.5),
где k – коэффициент, характеризующий объем газов или паров веществ, переходящих во взрывоопасную смесь. Его значения в расчетах принимаются k=0.4-0.6 [15, 16]. В некоторых методиках значение коэффициента k принимают в зависимости от способа хранения продукта: k = 1 - для резервуаров с газообразным веществом;
k = 0,6 - для газов, сжиженных под давлением;
k = 0,1 - для газов, сжиженных охлаждением (хранящихся в изотермических емкостях);
k = 0,05 - при аварийном разливе легковоспламеняющихся жидкостей;
– количество
вещества, разлившегося из разгерметизированной
емкости (хранилища);
8,5 – эмпирический коэффициент, который позволяет учесть различные условия возникновения взрыва (характеристики ГВС, состояние атмосферы, форму облака, мощность источника воспламенения, место его инициирования и др.).
За пределами зоны детонации избыточное давление ударной волны (ΔРф) резко снижается до атмосферного. В литературных источниках [7, 9,10, 14] предлагаются те или иные зависимости для расчета максимальных значений ΔРф в зоне детонации с учетом расстояния до места взрыва, например во второй методике, приведенной ниже.
В этой же методике для расчетов используются обобщенные данные изменения избыточного давления (ΔРф) исходя из расстояния, выраженного в долях от радиуса зоны детонации (r1/r0) и максимального давления (Pmax) в зоне детонации (табл. 2) [9]. При этом Pmax для различных ГВС находится по табл.2 из справочников [10, 14].
Зону распространения (действия) УВ обычно разбивают на несколько (n) зон [10] с радиусами:
смертельных поражений или полных разрушений (R100) с избыточным давлением на внешней границе ΔРф=100 кПа (ΔРф > 50 кПа);
сильных и полных разрушений соответственно с ΔРф=30 кПа и ΔРф=50 кПа (R50);
средних с ΔРф=20 кПа
слабых с ΔРф=10 кПа (R20)
безопасную зону с ΔРф < <10 кПа, т.е. ΔРф=6 -7 кПа (R6, 7). *По международным нормам безопасным
для человека является Δ Рф=7 кПа [10,14].
Затем, определив Pmax (табл. 2) для данной ГВС, вытекшей при аварии из емкости (хранилища), по табл. 3 [7] при принятых зонах с ΔРф1=100 кПа, ΔРф2=50 кПа, ΔРф3=20 кПа, R6,7=7кПа находим отношения r1/r0 и, следовательно, радиусы (Rn) принятых зон, зная r0 из (2.5)
(2.6)
и Rn=cn ·r0 (2.7),
где
n – показатель той или иной принятой
зоны; cx=
определяется
по табл.3.
По аналогии с характеристиками зон разрушений при воздействии воздушной УВ ядерных взрывов [6-8] определяют размеры опасных зон, в которых возникнут сильные, возможные (слабые) разрушения жилых и промышленных зданий в районах взрыва газо- и паровоздушных смесей углеводородных газов и жидкостей [9]. Следует сказать, что учитывая импульсный характер воздействия нагрузок от УВ, избыточное давление при взрыве ГВС, вызывающее сильные разрушения, будет примерно в 1,5-1,7 раза больше, чем при ядерном взрыве, т.е примерно ΔРф ГВСср~50 кПа, а возможные слабые разрушения – ΔРф ГВСсл=20 кПа [9,14].
Тогда радиусы зоны сильных (Rc) и слабых (Rсл) разрушений:
Rсл = R20 = r0 ·с20 ,
Rc = R50 = r0 · с50
Отношения R50/r0 и R20/r0 могут быть определены как по табл.3, так и по табл.4 [9]. В табл. 4 приведены значения радиусов зон сильных (Rc = R50) и слабых (Rcл = R20) разрушений для массы разлившейся ГВС из разгерметизированной емкости (Q) – Q=1-10000 т и максимальных значений давлений Pmax=500-2000 кПа [9].
Таблица 2
Физико-химические и взрывоопасные свойства некоторых веществ и их ГВС
Вещество |
ρ, кг/м3 |
Рmax, МПа |
Q, МДж/кг |
КПВ с воздухом, % (об) |
ρ с, кг/м3 |
Q с, МДж/кг |
γс |
D, м/с |
WTc |
Метан |
0,716 |
0,72 |
50,0 |
5,0-16,0 |
1,232 |
2,76 |
1,256 |
1750 |
0,527 |
Пропан |
2,01 |
0,86 |
46,4 |
2,1-9,5 |
1,315 |
2,80 |
1,257 |
1850 |
0,535 |
Бутан |
2,67 |
0,86 |
45,8 |
1,8-9,1 |
1,328 |
2,78 |
1,270 |
1840 |
0,486 |
Ацетилен |
1,18 |
1,03 |
48,2 |
2,5-81 |
1,278 |
3,39 |
1,259 |
1990 |
0,651 |
СО |
1,25 |
0,73 |
10,1 |
12,5-74,0 |
1,280 |
2,93 |
1,256 |
1840 |
0,580 |
Аммиак |
0,77 |
0,60 |
18,6 |
15,0-28,0 |
1,180 |
2,37 |
1,248 |
1630 |
0,512 |
Водород |
0,09 |
0,74 |
120,0 |
4,0-75,0 |
0,933 |
3,42 |
1,248 |
1770 |
0,648 |
Этилен |
1,26 |
0,886 |
47,2 |
3,0-32,0 |
1,285 |
3,01 |
1,259 |
1880 |
0,576 |
Таблица 3
Изменение ΔРф в зависимости от r1/r0 и ΔРmax в зоне детонации
Максимальное давление в зоне детонации (Рmax),
кПа |
Значения ΔРф, кПа на расстояниях от центра взрыва в долях от r0 (r1/r0 ) |
|||||||||||||||
1,0 |
1,05 |
1,1 |
1,2 |
1,4 |
1,8 |
2,0 |
3,0 |
4,0 |
6,0 |
8,0 |
10 |
12 |
15 |
20 |
30 |
|
500 |
500 |
270 |
155 |
115 |
90 |
55 |
48 |
25 |
15 |
8 |
5 |
4 |
3 |
2,5 |
1,5 |
1,0 |
900 |
900 |
486 |
79 |
207 |
162 |
99 |
86 |
45 |
26 |
14 |
9 |
7 |
5 |
4,5 |
2,7 |
1,8 |
1000 |
1000 |
540 |
310 |
230 |
180 |
110 |
96 |
50 |
29 |
16 |
10 |
8 |
6 |
5 |
3 |
2 |
1700 |
1700 |
918 |
527 |
391 |
306 |
195 |
163 |
82 |
50 |
28 |
18 |
13 |
10 |
8 |
5 |
3,7 |
2000 |
2000 |
1080 |
620 |
460 |
360 |
220 |
192 |
100 |
58 |
32 |
20 |
16 |
12 |
10 |
6 |
4 |
Таблица 4
Радиусы зон сильных и слабых разрушений
Рmax, кПа |
Рmax, кПа |
r20/r0 |
Радиусы зон r0 , сильных (Rc) и слабых (Rсл) разрушений, [м], вокруг емкостей с ГВС (ПВС), Q - 1т |
Радиусы зон r0 , сильных (Rc) и слабых (Rсл) разрушений, [м], вокруг емкостей с ГВС (ПВС), Q -10 т |
Радиусы зон r0 , сильных (Rc) и слабых (Rсл) разрушений, [м], вокруг емкостей с ГВС (ПВС), Q - 100 т |
Радиусы зон r0 , сильных (Rc) и слабых (Rсл) разрушений, [м], вокруг емкостей с ГВС (ПВС), Q -1000 т |
Радиусы зон r0 , сильных (Rc) и слабых (Rсл) разрушений, [м], вокруг емкостей с ГВС (ПВС), Q - 10 000 т |
500 |
1,9 |
3,5 |
15.6 30 55 |
33 63 115 |
72 137 252
|
150 285 525 |
330 627 1155 |
900 |
2,9 |
5,0 |
15.6 45 78 |
33 95 165 |
72 208 360 |
150 435 750 |
330 957 1650 |
1000 |
3 |
5.3 |
15.6 47 83 |
33 99 175 |
72 216 382 |
150 450 795 |
330 990 1750 |
1700 |
4 |
7.6 |
15.6 62 119 |
33 132 250 |
72 288 547 |
150 600 140 |
330 1320 2510 |
2000 |
4.8 |
8.0 |
15.6 75 125 |
33 158 264 |
72 345 576 |
150 720 1200 |
330 1584 2640 |
Скорость распространения детонационной волны [10,14] рассчитывается по зависимости
(2.8),
где - показатель адиабаты продуктов детонации, определяемый по табл.2, Q - теплота взрыва единицы массы ГВС или удельная теплота сгорания ГВС с воздухом, Дж/кг (табл.2).
Время полной детонации [10] облака ГВС находится по формуле:
tд=
(2.9)
При аварийном вскрытии газопроводов и емкостей, разлитиях ГВС и их испарении облако, переобогащенное топливом, не детонирует, а интенсивно горит с внешней поверхности, вытягивается и образует огненный шар, который, поднимаясь, принимает грибовидную форму.
Поражающее действие огненного шара характеризуется его размерами и временем теплового воздействия на объекты и людей, которое определяется временем горения (временем существования) огненного шара.
Их величина зависит от общей массы жидкости в емкости в момент взрыва. В работах [9,10] приводятся расчетные зависимости для определения радиуса и времени существования огненного шара.
Таким образом, алгоритм определения размеров опасных зон в районах взрыва газо- и паровоздушных смесей в открытой атмосфере можно представить в следующем виде:
Найти величину максимального давления в зоне детонации при взрыве заданной ГВС (Pmax, кПа) в воздушном пространстве, используя табл. 2.
Определить радиус детонации r0 по формуле (2.5);
Найти отношения r1/r0 по табл. 3 при Δ Рф1=100 кПа, ΔРф2=50 кПа, ΔРф3=20 кПа, ΔРф 4=7 кПа;
Рассчитать радиусы зон R100, R50, R20, R7 по формуле (14);
Определить (дополнительно) по табл. 4 радиусы зон сильных (Rc=R50) и слабых (Rсл=R20) разрушений, а также R50/r0 и R20/r0 при известной массе ГВС разлившейся из разгерметизированного хранилища (емкости) Q и Pmax.
Пример 1. В результате разгерметизации емкости с сжиженным пропаном в количестве Q=10т, произошел взрыв пропано-воздушной смеси. Определить радиусы зон разрушений при ΔРф1=100 кПа, ΔРф2=50 кПа, ΔРф3=20 кПа, ΔРф 4=7 кПа, приняв к=6.
Решение:
r0=18.5·
= r0=18.5·
=18,5·1.8=33
Из табл.2 для пропана Pmax=860кПа ≈ 900кПа.
Из табл. 3 при Pmax и Δ Рф1=100 кПа: r1/r0=1,8, R100/r0=1,8; при ΔРф2=50 кПа: r1/r0=2,9, R50/r0=2,9; при ΔРф3=20 кПа: r1/r0=5, R20/r0=5; при Δ Рф4=7 кПа: r1/r0=10, R7/r0=10.
Примечание. Аналогично по табл.4 при Pmax=900кПа и Q=10 т: r50/r0=2,9 или R50/r0=2,9; r20/r0=5 или R20/r0=5
Радиусы зон разрушений согласно (2.7):
R100=1,8
r0=1,8 · 33=60(м);
R50=2,9 ·r0=2,9 · 33=95(м);
R20=5·r0=5 · 33=165(м);
R7=10·r0=10 · 33=330(м).
Примечание. Радиусы зоны сильных (Rc) и слабых разрушений (Rсл) и r0 определим по табл. 4 (дополнительно) при Q=10т и Pmax=900кПа: Rc=R50=95м, Rсл=R20=165м и r0=33м.
=
=1802
где
=1,257 и
=2,8
· 106
Дж/кг
определены для пропано-воздушной смеси
по табл.2.
В общем случае по табл.2 можно было определить и D=1850 м/с [10].
tд=r0/D, tд1=33/1802=0,018
Контрольный пример. В населенном пункте расположена емкость с ацетиленовоздушной смесью в количестве 100т. Определить радиусы зон сильных и слабых разрушений при полной разгерметизации емкости и к=0,6.
Ответ: r0 =72 м, Rc = 216 м, Rcл=382 м, Pmax=1003 кПа.
Задания для самостоятельной работы:
В результате разгерметизации емкости с сжиженным газом произошел взрыв газовоздушной смеси. Определить радиусы зон разрушений при заданных условиях, приняв к=6.
Вариант |
Вещество |
, т |
ΔРф1 кПа |
ΔРф2 кПа, |
ΔРф3 кПа, |
R4 кПа, |
1 |
пропан |
20 |
100 |
50 |
25 |
10 |
2 |
бутан |
40 |
100 |
45 |
30 |
10 |
3 |
этан |
10 |
80 |
40 |
20 |
9 |
4 |
пропан |
70 |
90 |
30 |
25 |
6 |
5 |
этан |
30 |
100 |
40 |
20 |
7 |
6 |
ацетилен |
50 |
120 |
45 |
25 |
11 |
7 |
этилен |
10 |
70 |
30 |
25 |
8 |
8 |
водород |
10 |
75 |
35 |
30 |
10 |
9 |
аммиак |
30 |
85 |
45 |
20 |
10 |
10 |
этан |
25 |
100 |
40 |
20 |
6 |
11 |
метан |
24 |
90 |
45 |
30 |
6 |
12 |
глицерин |
35 |
80 |
35 |
20 |
10 |
13 |
этанол |
30 |
100 |
30 |
20 |
8 |
14 |
изобутан |
40 |
100 |
40 |
20 |
10 |
15 |
аммиак |
45 |
90 |
50 |
20 |
8 |
16 |
анилин |
60 |
70 |
40 |
30 |
6 |
17 |
ацетилен |
50 |
60 |
30 |
20 |
5 |
18 |
н-гептан |
40 |
100 |
40 |
30 |
7 |
19 |
н-гексан |
45 |
100 |
50 |
40 |
10 |
20 |
октан |
50 |
100 |
60 |
20 |
10 |