
- •Физико-химические процессы горения и взрыва
- •Часть 2 Взрывчатые вещества и смеси Практикум
- •Практикум составлен л. В. Куслиной, и.В. Машевской.
- •Оглавление
- •Введение
- •Глава 1. Взрывчатые вещества
- •Характеристика взрывчатых веществ
- •1.2. Классификация взрывчатых веществ (вв)
- •По составу
- •По физическому состоянию
- •По форме работы взрыва
- •По методу приготовления зарядов
- •По направлениям применения
- •1.3. Виды взрывов на взрывоопасных объектах (воо).
- •Глава 2. Взрывы паровоздушных и газовоздушных смесей
- •2.1. Параметры взрыва парогазовых смесей
- •2.2. Расчет максимального давления взрыва парогазовых смесей [2]
- •Расчет тротилового эквивалента взрыва и безопасного расстояния по действию воздушных ударных волн
- •Методики оценки зон разрушений при взрывах газо-воздушных смесей (гвс).
- •Взрывы гвс в открытой атмосфере [9,10]
- •Вторая методика расчета параметров зоны чс (разрушений)
- •Задания для самостоятельной работы
- •Взрывы гвс в замкнутых объемах
- •Задания для самостоятельной работы
- •2.5 Прогнозирование последствий взрывов газопаровоздушных смесей (гпвс) в производственных помещениях (третья методика) [16]
- •2.6 Взрывы газопаровоздушных смесей
- •Характеристики газопаровоздушных смесей
- •Взрывы пылевоздушных смесей (пвс)
- •Пример 1. В цехе по переработке полиэтилена при разгерметизации технологического блока возможно поступление пыли в помещение.
- •Задание для самостоятельной работы в цехе по переработке материалов при разгерметизации технологического блока возможно поступление пыли в помещение.
- •2.8 Взрывы при аварийной разгерметизации магистрального газопровода
- •Глава 3. Взрывы конденсированных взрывчатых веществ.
- •3.1 Прогнозирование обстановки при авариях со взрывом на пожароопасных объектах
- •Показатели инженерной обстановки
- •Список литературы
- •Теплосодержание некоторых веществ
- •Энтальпия (теплосодержание) газов при постоянном давлении
- •Теплота образования и сгорания некоторых веществ
- •Показатели пожарной опасности некоторых газов
- •Показатели пожарной опасности некоторых жидкостей
- •Величины параметров к и l для вычисления температурных пределов воспламенения некоторых жидкостей
- •Давление насыщенных паров некоторых веществ, гПа
- •Температура самовоспламенения, к некоторых ароматических соединений
- •Температура самовоспламенения, к некоторых предельных одноатомных спиртов в зависимости от средней длины углеродной цепи
- •Значение параметров разбавленной смеси
- •Вопросы для подготовки к экзамену по т г в (заочное отделение)
По методу приготовления зарядов
прессованные
литые (взрывчатые сплавы)
патронированные
По направлениям применения
военные;
промышленные:
для горного дела (добыча полезных ископаемых, производство стройматериалов, вскрышные работы);
для строительства (плотин, каналов, котлованов, дрожных выемок и насыпей);
для сейсморазведки;
для разрушения строительных конструкций;
для обработки материалов (сварка взрывом, упрочнение взрывом, резание взрывом);
специального назначения (например, средства расстыковки космических аппаратов).
антисоциального применения (терроризм, хулиганство), при этом часто используются низкокачественные вещества и смеси кустарного изготовления;
опытно-экспериментальные.
1.3. Виды взрывов на взрывоопасных объектах (воо).
На ВОО возможны следующие виды взрывов [4]:
неконтролируемое резкое высвобождение энергии за короткий промежуток времени и в ограниченном пространстве (взрывные процессы);
образование облаков топливно-воздушных смесей (ТВС) или других химических газообразных, пылеобразных веществ, их быстрые взрывные превращения (объемный взрыв);
взрывы трубопроводов, сосудов, находящихся под высоким давлением или с перегретой жидкостью, прежде всего резервуаров со сжиженным углеводородным газом.
Основными поражающими факторами взрыва являются:
воздушная ударная волна (УВ),
осколочные поля, создаваемые летящими обломками разного рода объектов техногенного образования, строительных деталей и т. д.
Основными параметрами поражающих факторов взрыва являются:
для воздушной ударной волны :
избыточное давление во фронте (ΔРф),
скоростной напор воздуха (ΔРск)
время действия Т;
для осколочного поля:
количество осколков,
их кинетическая энергия
радиус разлета [5-8 ].
Однако на практике в качестве определяющего параметра воздушной УВ принимают избыточное давление во фронте волны.
За единицу измерения ΔРф в системе СИ принят Паскаль (Па), внесистемная единица – кгс/см2: 1 Па = 1 Н/м2 = 10 дин/см2 = 0,102 кгс/м2 =10-5 бар = 7,50.10-3 мм ртутного столба = 0,102 мм водяного столба.
1 кгс/см2 = = 98,1 кПа ≈ 100 кПа.
Опыт ликвидации последствий аварий со взрывом газо- и паровоздушных смесей углеводородных веществ [4, 9, 10] в нашей стране и за рубежом показывает, что наиболее сложная обстановка складывается в зонах взрыва газо- и пылевоздушных смесей (ПВС), паровых облаков и сгорания нефтепродуктов, масел и др. опасных веществ. При возникновении таких аварий возможны два варианта развития ситуации: детонационный взрыв и дефлаграционное (или взрывное) горение [9].
Глава 2. Взрывы паровоздушных и газовоздушных смесей
2.1. Параметры взрыва парогазовых смесей
К показателям взрывоопасности веществ относятся такие параметры
взрыва, как:
максимальное давление взрыва;
тротиловый эквивалент взрывчатой системы или вещества;
тротиловый эквивалент взрыва (мощность взрыва);
фугасность.
Тротиловый эквивалент - энергетическая характеристика взрыва боеприпаса. Равен массе тротилового заряда (тринитротолуол), энергия взрыва которого равна энергии взрыва данного боеприпаса.
Ядерный взрыв 1 кг 235U или 239Pu при полном делении всех ядер эквивалентен по количеству выделившейся энергии химическому взрыву 20 000 т тротила.
Удельная энергия взрывчатого разложения тринитротолуола в зависимости от условий проведения взрыва варьируется в диапазоне 980-1100 кал/г. Для сравнения различных видов взрывчатых веществ условно приняты значения 1000 кал/г и 4184 Дж/г.
1 грамм тринитротолуола выделяет 1000 термохимических калорий, или 4184 джоулей;
1 килограмм ТНТ = 4,184×106 Дж;
1 тонна ТНТ = 4,184×109 Дж;
1 килотонна (кт) ТНТ = 4,184×1012 Дж;
1 мегатонна (Мт) ТНТ = 4,184×1015 Дж;
1 гигатонна (Гт) ТНТ = 4,184×1018 Дж.
Эти единицы используются для оценки энергии, выделенной при ядерных взрывах, подрывах химических взрывчатых устройств, падениях астероидов и комет, взрывах вулканов.
Самым мощным взрывным устройством за всю историю человечества стало изделие АН602 (т.н. Царь-бомба), мощность которой в тротиловом эквиваленте составила по разным данным от 57 до 58,6 Мт.
Фугасность - характеристика взрывчатого вещества, которая служит мерой его общей работоспособности, разрушительного, метательного и иного действия взрыва. Основное влияние на фугасность оказывает объем газообразных продуктов взрыва.
Точное определение истинной работоспособности связано с техническими трудностями, поэтому обычно фугасность определяют и выражают в относительных единицах по сравнению со стандартными взрывчатыми веществами (как правило, кристаллическим тротилом).
Для измеренной таким образом фугасности часто применяют термин тротиловый эквивалент. Существует несколько способов определения фугасности. Наиболее простым и распространенным является проба Трауцля.
Рис. 1 Схема пробы Трауцля
Этот способ в Российской Федерации используется для промышленных взрывчатых веществ как стандартный по ГОСТ 4546. Испытание проводят путем подрыва заряда массой 10 граммов, установленного внутри свинцового цилиндра (часто называемого бомбой Трауцля). До и после подрыва заряда измеряется объём полости внутри цилиндра. Разность между ними с учетом влияния температуры и капсюля-детонатора сравнивается с результатами испытания кристаллического тротила.
Также фугасность определяют измерением работы взрыва на баллистическом маятнике. Баллистический маятник - это маятник, употребляющийся для определения скорости снаряда, но также можно определять мощность взрывчатых средств. Действие его основано на ударном действии газов при взрыве. Амплитуда колебаний баллистического маятника пропорциональна скорости налетающего тела. Одновременно с выбрасыванием снаряда происходит отдача тяжелого маятника, которая измеряется по шкале в градусах при помощи подвижного указателя.
Бризантность (фр. brisance) - характеристика взрывчатого вещества (ВВ). Служит мерой его способности к локальному дробящему воздействию на среду, в которой происходит взрыв. Термин имеет происхождение от французского «brise» (разрушение), т.е. бризантное действие - это дробление среды, окружающей заряд.
Бризантное и фугасное действие легко показать на примере: если взять кирпич и ударить по нему кувалдой, то этот кирпич сначала расколется (бризантное действие), а обломки отлетят на некоторое расстояние (фугасное действие).
Бризантность зависит от состава взрывчатого вещества, его плотности, физического состояния, степени измельчения. Как правило, бризантность возрастает с увеличением плотности и скорости детонации ВВ. Среди способов определения бризантности наиболее простым и распространенным является проба Гесса
Рис. 2. Проба Гесса
Этот способ в Российской Федерации используется для промышленных ВВ как стандартный по ГОСТ 5984-99. Испытание проводят путем подрыва заряда массой 50 граммов, установленного на свинцовом цилиндре диаметром 40 мм и высотой 60 мм. После подрыва заряда измеряется уменьшение высоты свинцового цилиндра. Разность между средними высотами цилиндра до и после взрыва является мерой бризантности ВВ. Традиционно измеряется в миллиметрах.