
- •5 Показ наиболее характерных, технически и экономически обоснованных случаев применения электротехнических материалов в практике.
- •Обозначение основных величин, принятые в книге.
- •Раздел I. Основы металловедения.
- •§1. Строение и свойство металлов.
- •§ 2. Железо и его сплавы.
- •§ 3. Классификация и маркировка углеродистой стали и чугунов.
- •§ 4. Классификация чугунов.
- •§ 5. Легированные стали.
- •§ 6. Термическая и химико-термическая обработка металлов.
- •§ 7. Диффузионная металлизация.
- •§ 8. Коррозии металлов и сплавов. Понятие о коррозии, ее виды.
- •§ 9. Цветные металлы и сплавы. Общие понятия о цветных металлах и сплавах. Медь и ее сплавы.
- •Проводниковые материалы и изделия.
- •§ 10. Классификация проводниковых материалов.
- •§11. Проводниковая медь и ее свойства.
- •§ 12. Проводниковые сплавы на основе меди (бронзы и латуни).
- •§13. Проводниковый алюминий и его свойства.
- •§ 14. Проводниковые железо и сталь.
- •§ 15. Свинец и его свойства.
- •§ 16. Благородные металлы, применяемые в электротехнике.
- •§ 17. Тугоплавкие металлы применяемые в электротехнике.
- •§ 18. Проводниковые материалы с большим удельным сопротивлением.
- •§19.Проводниковые сплавы высокого сопротивления на основе меди и никеля.
- •§ 20. Жаростойкие проводниковые сплавы.
- •§ 21. Свойства сверхпроводников.
- •§ 22. Электроугольные материалы и изделия.
- •§ 23. Основные свойства электроугольных изделий.
- •§ 24. Экранные материалы.
- •§ 25. Проводниковые изделия.
- •§ 26. Монтажные провода.
- •Установочные провода
- •§ 27. Контрольные кабели.
- •§ 28.Силовые кабели с резиновой изоляцией.
- •§29. Кабели с бумажной изоляцией.
- •Раздел III
- •§30. Поляризация диэлектриков.
- •§ 31. Потери энергии в диэлектриках.
- •§ 32. Пробой диэлектриков.
- •§ 33. Способы измерения электрических характеристик диэлектриков.
- •§ 34. Тепловые характеристики и способы их измерения.
- •§ 35. Физико-химические характеристики электроизоляционных материалов.
- •§ 36. Влажностные свойства диэлектриков.
- •§ 37. Газообразные диэлектрики. Значение газообразных диэлектриков.
- •1 В состав воздуха входят: Таблица 22
- •§ 38. Жидкие диэлектрики. Классификация и назначение жидких диэлектриков.
- •§ 39. Синтетические жидкие диэлектрики.
- •§ 40. Твердые органические диэлектрики . Основные понятия о высокополимерных материалах.
- •§ 41. Полимеризационные органические диэлектрики.
- •§ 42. Поликонденсационные органические диэлектрики.
- •§ 43. Нагревостойкие высокополимерные диэлектрики.
- •§ 44. Пленочные электроизоляционные материалы.
- •§ 45. Воскообразные диэлектрики
- •§ 46. Электроизоляционные резины.
- •§ 47. Электроизоляционные лаки.
- •§ 48. Основные сведения о волокнистых электроизоляционных материалах.
- •§ 49. Древесина и ее свойства.
- •§ 50. Волокнистые диэлектрики.
- •§ 51. Текстильные электроизоляционные материалы.
- •§ 52. Электроизоляционная слюда и материалы на ее основе.
- •§ 53. Миканиты.
- •§ 54. Микафолий, микалента.
- •§ 55. Слюдинитовые электроизоляционные материалы.
- •§ 56. Электрокерамические материалы.
- •§ 57. Изоляторная керамика.
- •§ 58. Фарфоровые изоляторы.
- •§ 59. Стекло и стеклянные изоляторы.
- •§ 60. Основные характеристики изоляторов.
- •§ 61. Конденсаторные керамические материалы.
- •§ 62. Сегнетокерамика.
- •§ 63. Минеральные диэлектрики.
- •Раздел IV
- •§ 64. Электропроводность полупроводников
- •§ 65. Основные характеристики и свойства
- •§ 66. Полупроводниковые материалы и изделия.
- •§ 67. Основные полупроводниковые изделия.
- •Раздел V
- •§ 68. Основные характеристики магнитных материалов.
- •§ 69. Классификация магнитных материалов.
- •§ 70. Влияние химического состава и технологии на
- •§ 71. Магнитно -мягкие материалы.
- •§ 72. Магнитно-мягкие сплавы
- •§ 73. Ферриты.
- •§ 74. Основные свойства магнитно-твердых материалов.
- •§ 75. Магнитные стали.
- •§ 76. Магнитно-твердые сплавы.
- •§ 77. Магнитно-твердые ферриты.
- •Раздел VI. Способы обработки материалов.
- •§ 78. Сварка металлов.
- •§ 79. Классификация способов сварки.
- •§ 80. Обработка давлением.
- •§ 81. Литье и литейное производство.
- •Виды литья.
- •Специальные виды литья.
- •§ 82. Паяние.
- •§ 83. Флюсы.
- •§ 84. Паяльные лампы.
- •§ 85. Инструменты для паяния. Виды паянных соединений.
- •§ 86. Паяние мягкими припоями.
- •§ 87. Лужение.
- •§ 88. Паяние твердыми припоями.
§ 65. Основные характеристики и свойства
полупроводниковых материалов.
Каждый полупроводниковый материал, как это выяснено выше, обладает электронной и дырочной электропроводностями. Под действием приложенного электрического напряжения свободные электроны движутся от отрицательного полюса к положительному, а дырки возникают в направлении, противоположном движению электронов. Движение электронов и дырок в условиях действия на них электрического напряжения может быть охарактеризовано скоростями их при данной напряженности электрического поля Е в полупроводнике. Если значение скорости движения электрона vэ, или дырки vд отнести к величине Е, то полученные величины будут характеризовать свойство электронов или дырок двигаться в данном полупроводнике. Эти величины получили название подвижностей носителей тока. Они обозначаются греческой буквой χ (каппа) с индексами «э» или «д», указывающими к какому носителю заряда они относятся. Так, подвижность электрона будет выражаться χэ=νэ/Е, а подвижность дырок χд =νд/Е.
Подвижность χ носителей зарядов указывает, какой путь проходит за одну секунду внутри полупроводника электрон или дырка при напряженности электрического поля, равной единице (Е=1 в/см). Величина подвижности электрона и дырки выражается в см2/сек*в.
Если обозначить количество электронов в одном кубическом сантиметре полупроводника буквой nэ , а дырок буквой - рД , то проводимость γ полупроводника
γ=е(nэ χэ+ рД χд),
где е-заряд электрона, а следовательно и дырки, равный 1,6*10-19 к (кулон).
В случае собственной электропроводности полупроводника это выражение становится проще, так как в этом случае число свободных электронов равно числу дырок, т.е. nэ=nД.
При движении под действием электрического поля электроны и дырки встречают различного рода препятствия, поэтому теряют часть энергии и рассеиваются, т.е. отклоняются от направления своего пути. Такие явления получили название рассеяния носителей тока. Рассеяния создаются, в частности примесями. Чем чище полупроводниковый материал, тем выше подвижность электронов и дырок. Повышение температуры обуславливает уменьшение подвижности, так как при этом усиливается тепловое движение атомов самого полупроводника и столкновения электронов с атомами учащаются. Однако с повышением температуры проводимость полупроводника все же увеличивается, так как увеличивается число носителей зарядов, т.е. повышается концентрация электронов и дырок. В чистых полупроводниках, не имеющих примесей, собственная электропроводность при невысоких температурах (комнатных) невелика. Поэтому в большинстве технических полупроводниковых материалов желаемую величину проводимости можно получить лишь введением в них определенных примесей.
Кроме подвижности, носители электрических зарядов характеризуются и другими характеристиками, из которых наиболее важные — время жизни носителей τ (тау) и длина свободного пробега l. Время жизни — время существования электрона или дырки в свободном состоянии, а длина свободного пробега электрона есть расстояние, на котором электрон движется без столкновений с собственными атомами или с положительно ионизированными атомами примесей — дырками.
Если измерять ток в полупроводнике при разных напряжениях, то можно заметить, что прямой зависимости между током и напряжением здесь нет. Ток при повышении напряжения возрастает в полупроводнике значительно быстрее напряжения.
Это хорошо иллюстрируется вольтамперной характеристикой, показанной на рис. 148. Если при перемене напряжения на обратное (— U), изменение направления тока в полупроводнике исходит по такому же закону, но в обратном направлении, то полупроводник имеет симметричную вольтамперную характеристику. Искусственно можно создать разные по величине электрические сопротивления полупроводника в двух направлениях, а именно : при протекании тока в одном направлении сопротивление полупроводника может быть меньше, а при протекании тока в противоположном направлении – больше. Тогда в разных направлениях будет протекать ток различной величины: больший в направлении с меньшим сопротивлением, а меньший – в направлении с большим сопротивлением. В этом случае получиться несимметричная вольтамперная характеристика (рис.150 ).
рис.149.Симметричная
ВАХ полупроводника
В таком полупроводнике различают прямой быстро возрастающий ток Iпр и обратный ток Iо6р, нарастание которого очень мало даже при очень большом обратном напряжении. Последнее направление тока в полупроводнике называется запирающим.
При невысоких температурах полупроводника, в зависимости от валентности атомов примеси, в нем можно ожидать примесную электропроводность — электронную или дырочную. При нагревании же полупроводника в нем будет значительно увеличиваться собственная электропроводность, при которой количества собственных свободных электронов и дырок равны. Поэтому при высоких температурах преобладающей будет собственная электропроводность, при которой действительны оба ее типа: n – и p- электропроводности. При этом исчезают различия в электропроводности. Это означает, что если благодаря примесям германий при низких температурах имел преимущественно дырочную электропроводность, то при высоких температурах ее преобладание исчезает. График изменения величины удельной проводимости γ полупроводника в зависимости от температуры показан на рис. 151. Рис.151. Области собственной и примесной электропроводности в зависимости от температуры .
П
■
I
олупроводниковые
материалы весьма чувствительны к
повышению температуры. Этим свойством
отдельных полупроводников пользуются
для создания термосопротивлений, которые
можно применять для изменения температур
или стабилизации температуры в различных
установках. Такие полупроводники можно
использовать также для изготовления
из ниx
термоэлементов или термогенераторов,
превращающих тепловую энергию в
электрическую. Действительно, если один
конец электронного полупроводника
нагреть сильнее другого, то это вызовет
перемещение электронов из горячего
участка полупроводника (где их концентрация
и энергия выше) в холодный участок.
Тем
самым в холодном участке создается
преобладание отрицательных электрических
зарядов, и он зарядится отрицательно,
а горячий участок, наоборот, зарядится
положительно. На концах полупроводника
появится разность потенциалов —
термоэлектродвижущая сила. В полупроводниках
же с дырочной электропроводностью
горячий участок зарядится отрицательно,
а холодный — положительно. Эти явления
усиливаются, когда два различных
Весьма важным для использования полупроводниковых материалов является тот факт, что некоторые полупроводники резко повышают свою проводимость под действием световых излучений. Это вызывается тем, что световые излучения передают электронам, слабо закрепленным в атомах, определенные количества энергии, достаточные для того, чтобы освободить их из атома. Это свойство полупроводников называется фотопроводимостью. Если такие полупроводники приключить к внешнему источнику напряжения, то в темноте они будут иметь меньшую проводимость, а на свету или при специальном освещении — значительно большую. Это свойство используется в фотосопротивлениях, чувствительных не только к видимому участку спектра, но и к инфракрасным излучениям.
Полупроводники с фотопроводимостью можно использовать для создания фотоэлементов, преобразующих энергию светового излучения в электрическую. Если осветить часть полупроводника, то в освещенном и неосвещенном участке возникнет различная концентрация электронов, т. е. создается разность потенциалов — фотоэлектродвижущая сила. На этом принципе работают различные фотоэлементы и преобразователи солнечной энергии в электрическую — солнечные батареи.
Электрическое сопротивление полупроводниковых материалов не является величиной постоянной (как в металлических проводниках), а зависит от величины прилагаемого к нему напряжения. Электрическое сопротивление полупроводников уменьшается с увеличением приложенного к ним напряжения, а ток увеличивается.
На (рис. 152) показаны кривые зависимости сопротивления и тока в полупроводнике от приложенного к нему напряжения. Из рисунка видно, что сопротивление с увеличением напряжения резко падает, а ток резко возрастает.
Полупроводник с несимметричной вольтамперной характеристикой в течении одной полуволны переменного напряжения будет пропускать ток, а в течении другой полуволны ток пропускать не будет. Такие полупроводниковые материалы могут быть использованы для изготовления из них полупроводниковых выпрямителей.