
- •Министерство образования российской
- •В.Ю. Воскресенский, т.Г.Мороз, в.В.Фадеев теплотехника Учебно-практическое пособие для студентов технологических специальностей всех форм обучения
- •Москва – 2004
- •Раздел 1. Т е х н и ч е с к а я т е р м о д и н а м и к а
- •1. Термодинамические параметры состояния
- •1.1.Равновесные состояния
- •1.2.Основные параметры равновесного состояния
- •1.3. Давление
- •1.4. Температура
- •1.5. Удельная внутренняя энергия
- •1.6. Энтальпия. Удельная энтальпия
- •2.Первый закон и уравнение первого закона термодинамики
- •2.1.Термодинамическая система
- •2.1. Две формы потока энергии - работа и тепловой поток
- •2.2.Первый закон термодинамики. Внутренняя энергия
- •2.3. Уравнение первого закона термодинамики
- •2.4. Термодинамический процесс
- •2.5.Вычисление работы сил давления
- •2.6. Вычисление теплового потока. Энтропия
- •3. Открытые термодинамически системы
- •4. Простейшие термодинамические процессы в открытых системах
- •4.1. Изобарные процессы
- •4.2.Изоэнтропные процессы
- •4.3.Адиабатное дросселирование
- •5. Второй закон термодинамики
- •5.1. Равновесные и неравновесные термодинамические процессы
- •5.2. Аналитическая формулировка второго закона
- •6. Термодинамические свойства рабочих тел. Пар
- •6.1. Диаграммы термодинамического состояния веществ
- •6.2. Описание свойств с использованием pv-диаграммы
- •6.3. Таблицы термодинамических свойств рабочих тел
- •6.4. Диаграммы термодинамических свойств рабочих тел
- •6.5.Процесс дросселирования
- •7. Термодинамические свойства газов
- •7.2. Область состояний реальных газов, в которой они приобретают свойства идеальных газов
- •7.3. Термическое уравнение состояния идеальных газов - формула Клапейрона-Менделеева
- •7.4. Закон Джоуля
- •7.5. Теплоемкости сР и сV газов
- •7.6. Идеальные газы и первый закон термодинамики
- •8. Круговые термодинамические процессы рабочих тел в теплосиловых установках и холодильных машинах
- •8.1. Первый закон термодинамики и работа цикла
- •8.2. Показатели эффективности прямого и обратного циклов: термический кпд и холодильный коэффициент
- •8.3 . Сравнительный анализ типовых задач на прямые и обратные циклы
- •Вопросы для самоконтроля по разделу 1
- •Тест по разделу 1 Исключите (зачеркните) по одному неверному варианту в каждом из следующих суждений (верные ответы даны в конце пособия):
- •Раздел 2. Т е п л о п е р е д а ч а
- •1. Теплопроводность
- •Стационарная теплопроводность
- •2. Конвективный теплообмен (теплоотдача)
- •Течение теплоносителя внутри труб.
- •Коридорное Шахматное
- •3. Теплообмен при изменении агрегатного состояния вещества.
- •4. Теплопередача
- •Удельный тепловой поток определяется
- •5. Теплообмен излучением
- •6.Теплообменные аппараты
- •Температурный напор для противотока
- •Раздел 3. Промышленная теплоэнергетика
- •1. Топливо. Энергетическое топливо. Виды и назначение топлив.
- •1.1. Элементарный состав топлива.
- •1.2. Теплотехнические характеристики топлив.
- •2. Котельные установки.
- •3.Паровые котлы.
- •4.Водоподготовка.
- •5. Тепловой баланс котельного агрегата.
- •5.1.Мероприятия по экономии топлива и тепловой энергии на предприятиях пищевой промышленности
- •5.2.Классификация вторичных энергоресурсов (вэр).
- •6. Отопление, вентиляция и кондиционирование воздуха.
- •6.1.Отопление.
- •6.2.Вентиляция
- •6.3.Кондиционирование воздуха.
- •Вопросы для самоконтроля по разделу 3
- •Тест по разделу 3
- •Ответы на вопросы тестов
- •Решение тренировочных заданий
- •Вопросы к экзамену
- •Тест по дисциплине
- •Воскресенский Всеволод Юрьевич, Мороз Тамара Георгиевна, Фадеев Владимир Васильевич Теплотехника
7.2. Область состояний реальных газов, в которой они приобретают свойства идеальных газов
Термодинамические свойства газов, то есть соотношение между их параметрами и функциями в равновесном состоянии зависят в общем случае от уровня температур и давлений. При не слишком высоких давлениях их плотности малы (удельные объемы велики), поэтому их термодинамические свойства приближаются к свойствам идеальных газов.
7.3. Термическое уравнение состояния идеальных газов - формула Клапейрона-Менделеева
Термодинамические свойства идеальных газов определяются по достаточно простым формулам, называемым уравнениями состояния. Первым уравнением состояния является известное уравнение Клапейрона-Менделеева (для газа массой 1 кг):
pv = RT, (1-16)
где газовая постояннаяR, кДж/(кг.К), данного газа определяется по универсальной газовой постоянной Rм= 8,31441 кДж/(кмоль.К) и молярной массе данного газа M, кг/кмоль:
R=Rм/M. (1-17)
Например, для воздуха (М = 29 кг/кмоль) R=8,314 / 29 = 0,287кДж/кг/К. Значения газовой постоянной R разных газов приводятся во многих таблицах.
7.4. Закон Джоуля
Вторая отличительная особенность идеальных газов - это то, что их энтальпия и внутренняя энергия зависят только от температуры (закон Джоуля). Так, если в общем случае удельная энтальпия определяется как функция двух параметров, h = h(t, p), то согласно закону Джоуля в случае идеального газа энтальпия не зависит от изменения давления:
hид= h(t), uид= u(t). (1-18)
7.5. Теплоемкости сР и сV газов
Важной характеристикой термодинамических свойств веществ, особенно газов, является их т е п л о е м к о с т ь. Теплоемкостью называют способность тел воспринимать определенную величину теплопритока при изменении температуры тела на один градус.
Теплоемкость единицы массы тела (1 кг) обозначают буквой си измеряют в кДж/кг/К, или, что равносильно, в кДж/кг /оС.
Различают теплоемкости - среднюю в интервале температур t1...t2
и истинную в окрестностях температуры t:
c12 = q / (t2- t1), сt = dq / dt. (1-19)
Эти теплоемкости связаны очевидным соотношением
с12(t2- t1) =ctdt .
Особенностью, отличающей газы от твердых или жидких тел, является способность газов при изменении температуры существенно изменять объем. Поэтому величина теплоемкости зависит от вида процесса. Важную роль в расчетах играют теплоемкости изобарного и изохорного процессов.
Чтобы различать теплоемкости этих двух процессов - изобарного и изохорного, их обозначают различными нижними индексами: cPи cV.
Можно показать, что теплоемкости сри сvс связаны с энтальпией и соответственно внутренней энергией газов. Действительно, первый закон термодинамики для равновесных процессов выражается любым из двух равенств -
dq = dh - v dp, или dq = du + p dv. (1-20)
При p = const первое из этих равенств принимает вид
dqp= dh, или qp= h2- h1,
откуда с учетом формулы (1-19) выявляется прямая взаимозависимость между энтальпией и изобарной теплоемкостью:
dh = cp dt, (1-21)
h2- h1= (cp)12 (t2 - t1). (1-22)
Аналогично, при v = const имеем
dqv=du,qv =u2-u1
du = cvdt,
u2 -u1= (cv)12(t2 -t1). (1-23)
Полученные равенства, действительно, устанавливают взаимозависимость между изменением сри h и между изменением сvи u.