
- •Полезная длина стержней решетки составит
- •Количество осветленной воды равно разности
- •Тогда
- •В свою очередь
- •Диаметр отстойника равен
- •Рис. 2.17. Типовая нефтеловушка пропускной способностью 396 м3/ч:
- •Тогда объем осадка
- •Расход шлама Qшл, л/с, определяется по формуле
- •Устанавливаем две центрифуги типа НОГШ-600.
- •Рис. 2.23. Схема установки сетчатого барабанного фильтра:
- •Рис. 2.24. Напорный вертикальный фильтр с зернистой загрузкой:
- •Решение. Уравнение материального баланса по потокам в фильтре
- •Уравнение материального баланса по твердой фазе
- •Объем осадка равен
- •Для определения объема фильтрата (очищенной воды) по аналогичной формуле выразим массовую производительность по фильтрату через производительность по осадку из уравнений материального баланса.
- •Тогда объем очищенной воды-фильтрата равен
- •Площадь осветлителя Foсв, м2, с вертикальным осадкоуплотнителем находим по выражению
- •Суммарное количество осадка, поступающего в уплотнитель
- •3.3. Экстракционные аппараты и установки.
- •Тогда
- •Определяем высоту рабочей части экстрактора
- •Тогда с учетом потерь расход сточных вод равен
- •Плотность частицы набухшего катионита
- •Таблица 3.1
- •Характеристики ацетатцеллюлозных мембран
- •Марка мембраны
- •Тогда
- •Рис. 4.1. Принципиальная схема станции реагентной нейтрализации:
- •Щелочи
- •Кислоты
- •Негашеная известь
- •Таблица 4.2
- •Количество реагентов, требуемое для удаления металлов
- •Цинк
- •Их объем
- •Таблица 4.3
- •Характеристика озонаторов трубчатого типа
- •Тогда активная мощность разряда озонатора будет равна
- •Тогда расход сухого воздуха через одну трубку озонатора
- •Рис. 5.5. Схема биотенка:
- •1 — корпус; 2 — элементы загрузки.
- •Рис. 6.6. Пленочный денитрификатор:

торого имеется дренажное устройство для отвода воды. На дренаж укладывают слой поддерживающего материала, а затем фильтрующий материал. Для скорых фильтров используют открытые (самотечные) или закрытые (напорные) резервуары с восходящим (снизу вверх) или нисходящим (сверху вниз) потоком.
Фильтр рассчитывается на давление до 0,6 МПа и загружается, как правило, кварцевым песком слоем 1 м. В качестве загрузки могут быть использованы дробленый антрацит, керамзит, керамическая крошка.
Грязеемкость (количество загрязнений в кг, удаляемых с 1 м2 поверхности фильтрующего слоя в единицу времени) фильтров с восходящим потоком больше, чем с нисходящим.
Рис. 2.24. Напорный вертикальный фильтр с зернистой загрузкой:
1 — подача воды на очистку; 2 — фильтрующий слой из зернистой загрузки: 3 — верхнее распределительное устройство; 4 — контрольный эллиптический лаз: 5 — круглый лаз; 6 — подвод промывной воды; 7 — отвод первого фильтрата; 8 — отвод очищенной воды; 9 — отвод промывной воды; 10 — подвод сжатого воздуха; 11 — штуцер для гидравлической выгрузки и загрузки фильтра.
В фильтрах с восходящим потоком наблюдаются: заиливание дренажного устройства, коррозия труб и зарастание их карбонатами, поэтому чаще используются фильтры с нисходящим потоком.
Загрузка фильтров может быть однослойной и многослойной. Многослойные фильтры загружают однородным материалом с разной крупностью частиц либо разнородными материалами.
63
Однослойные фильтры (без коагуляции или с коагуляцией) предназначены для задерживания мелкодисперсных частиц, выносимых из отстойников или осветлителей.
Более эффективно работают многослойные фильтры. Грязеёмкость многослойных фильтров в 2…3 раза больше, чем однослойных.
Напорные фильтры имеют направление фильтрования сверху вниз, скорость фильтрования 5…12 м/ч, а продолжительность фильтроцикла 12…48 ч в зависимости от характера нефтесодержащих сточных вод (меньшая величина при значительном содержании в воде железа). Остаточное содержание в воде нефтепродуктов допускается 7…20 мг/л (начальное содержание 40…80 мг/л), механических примесей — 10…20 мг/л (начальное содержание 30…60 мг/л).
Грязеемкость зернистых фильтров может быть принята по задержанию нефти, равной 1…2 кг/м3, и механических примесей — 1,5…3 кг/м3. Эффективность фильтрования повышается при добавлении в воду 5…10 мг/л коагулянта Al2(SO)3 и 0,2…0,3 мг/л флокулянта ПАА. Потери напора в фильтрах достигают 0,9…1,3 м (0,009…0,13 МПа).
Скорые фильтры рассчитывают на рабочий и форсированный режимы (при выключении отдельных секций на промывку).
2.3.3. Фильтры с полимерной загрузкой.
Одним из путей интенсификации фильтрования сточных вод является применение новых фильтрующих материалов. Перспективным является использование плавающих загрузок из различных полимерных материалов, обладающих достаточной механической прочностью, химической стойкостью, высокими площадью активной свободной поверхности и пористостью. К числу таких материалов относятся полистирол различных марок (в том числе пенополистирол), пенополиуретан, а также гранулы керамзита, котельные и металлургические шлаки.
В зависимости от содержания и характера взвешенных веществ в сточной воде, подаваемой на очистные сооружения, а также от их пропускной способности принимаются следующие основные схемы фильтрования: через многоярусные или многослойные фильтры с загрузкой по убывающей крупности гранул по ходу осветляемой воды снизу вверх; через фильтры большой грязеемкости при фильтровании воды сверху вниз, с горизонтальным направлением фильтрования; с непрерывной регенерацией загрузки.
Фильтры с плавающей пенополистирольной загрузкой применяются для очи-
стки сточных вод от взвешенных веществ, в которых в качестве плавающей фильтрующей загрузки использовались вспененные гранулы пенополистирола. Этот материал износоустойчив, водонепроницаем, нетоксичен, имеет достаточную механическую прочность и высокую адгезионную способность (плотность 0,01…0,03 г/см3).
Фильтры с плавающей загрузкой из полистирола могут быть однослойными и двухслойными, а также встроенными в первичные или вторичные отстойники. Скорость фильтрации в таких фильтрах 0,6…2 м/ч. Для регенерации зернистых фильтрующих материалов проводится интенсивная водо-воздушная промывка.
Внутри фильтра находятся два слоя гранул, разделенных удерживающими сетками. В нижнем слое, служащем для предварительного фильтрования, применяются гранулы диаметром 2…5 мм, верхний слой загрузки с гранулами диаметром 0,3…2 мм предназначен для более глубокого фильтрования.
64

Фильтры с пенополиуретановой загрузкой («Полимер-300» и «Полимер-500»)
предназначаются (рис. 2.25) для очистки невзрывоопасных сточных вод от нефтепродуктов и масел, находящихся в виде нестойких эмульсий и имеющих рН = 6…9.
Рис. 2.25. Пенополиуретановый фильтр:
1 — слой пенополиуретана; 2 — элеватор; 3 — направляющие ролики; 4 — лента; 5 — ороситель; 6 — отжимные ролики; 7 — емкость; 8 — решетка.
Сточные воды, содержащие отработанные смазочно-охлаждающие жидкости, а также сточные воды гальванических, травильных и окрасочных отделений могут подаваться на пенополиуретановые фильтры только после обработки их на локальных очистных сооружениях. Для обеспечения требуемой степени очистки сточных вод эти фильтры рекомендуется применять после решеток, песколовок и нефтеловушек.
2.3.4. Электромагнитные фильтры.
Электромагнитные фильтры (рис. 2.26) предназначены для очистки или глубокой очистки сточных вод от механических загрязнений, содержащих более 25 % ферромагнитных примесей, с исходной концентрацией твердых частиц до 200 мг/л и масел до 50 мг/л. Они могут применяться в системах производственного водоснабжения металлургических, горно-обогатительных, металлообрабатывающих предприятий, на электростанциях для очистки охлаждающей и многократно используемой воды, а также конденсата от продуктов коррозии.
65

Рис. 2.26. Схема электромагнитного фильтра:
1 – трубопровод исходной сточной воды; 2 – катушка индуктивности; 3 – корпус из немагнитного материала; 4 – ограничительная решетка; 5 – фильтровальная загрузка;
6 – опорная решетка; 7 – трубопровод очищенной воды.
Фильтры рекомендуется изготовлять из немагнитного материала диаметром 1…2 м и высотой 2…2,5 м. Фильтр состоит из корпуса, магнитной системы, представляющей собой катушки индуктивности с магнитопроводами, между которыми расположена фильтрующая зернистая загрузка из ферромагнитного материала, а также устройств для подвода и отвода сточной воды. В качестве фильтрующих элементов в электромагнитных фильтрах применена зернистая загрузка из ферромагнитных материалов крупностью 1…3 мм. Фильтрование очищаемой сточной воды производят при наложении магнитного поля, промывку — без его применения.
При наложении магнитного поля определенной напряженности зернистая загрузка уплотняется и вследствие уменьшения пористости приобретает высокую фильтровальную способность, что позволяет задерживать на фильтре наряду с магнитными и немагнитные компоненты из состава взвешенных веществ (окалины).
Перед промывкой необходимо фильтрующую загрузку размагничивать, для чего через намагничивающие катушки пропускают ток противоположного направления. После размагничивания загрузки включают скребковый механизм, а в фильтр подают промывную воду.
Эффективность очистки сточных вод от ферромагнитных и немагнитных примесей составляет соответственно 95…98 и 40…60 %.
2.3.5. Расчет фильтров.
Процесс фильтрования зависит от многих технологических параметров, и в первую очередь от свойств зернистого слоя, свойств фильтрационной среды и примесей, от гидродинамического режима фильтрования.
Важнейшими характеристиками пористой среды являются порозность и удельная
поверхность, которые определяются по зависимостям |
|
|
||||
ε0 |
= |
V −V0 |
; |
a = |
6(1−ε0 )α |
, |
V |
|
|||||
|
|
|
|
dэ |
66
где ε0 — порозность слоя; V — общий объем зернистого слоя, м3; V0 — объем частиц, м3; a - удельная поверхность слоя, м2/м3; dэ -эквивалентный диаметр частицы, м; α —
коэффициент формы.
Частицы задерживаются поверхностью зерен под действием молекулярных сил, электростатических сил, сил химического сродства и адсорбции. Величина сил прилипания зависит от крупности и формы зерен, скорости потока, температуры воды и свойств примесей.
Кинетика фильтрования и материальный баланс описываются уравнениями
− |
∂C |
= bC − aρ ; |
∂ρ |
= −u |
∂C |
, |
|
∂x |
∂τ |
∂x |
|||||
|
|
|
|
где С — концентрация примесей в сточной воде; х — толщина слоя загрузки; b, а — константы скорости прилипания и отрыва частиц; ρ — плотность насыщения фильт-
рующего слоя задержанным осадком; u — скорость фильтрования. |
|
||||||
При решении этих уравнений получается общее уравнение процесса: |
|
||||||
|
∂2C |
+ au |
∂C |
+b |
∂C |
= 0 . |
(2.8) |
|
∂x∂τ |
∂x |
∂τ |
||||
|
|
|
|
|
Уравнение (2.8) имеет решение в виде бесконечного ряда, и его трудно использовать в расчетах.
В процессе фильтрования происходит накопление загрязнений в слое загрузки. В какой-то момент наблюдается вынос частиц в фильтрат с ухудшением его качества. Продолжительность работы фильтра до проскока частиц в фильтрат называют временем защитного действия загрузки τз . По мере загрязнения фильтрующего слоя умень-
шается его порозность и увеличивается сопротивление при прохождении через него сточной воды, т.е. растет потерянный напор. Время работы фильтра до достижения потерянного напора предельной величины (Hп) обозначают через τн . Оптимальным усло-
вием работы фильтра является τн ≈τз . Значения
|
1 b |
x |
|
|||
τз = |
|
|
|
x − |
0 |
; |
|
|
b |
||||
|
k a |
|
τз и τн находят по формулам
τн = |
H п − H |
0 |
|
b |
x , |
H п F( A) |
|
|
a |
||
|
|
|
|
где k и x0 — константы, зависят от эффекта осветления, определяются по справочникам; H 0 — потеря напора в чистой загрузке; F( A) — параметр, зависящий от величины
предельной насыщенности порового пространства отложениями А. Сопротивление фильтрующего слоя в любой момент времени равно
|
|
|
|
|
x |
|
x |
|
ε |
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dx ; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
H = ∫idx = i0 ∫ |
ε0 |
− |
|
|
|
|
|
|
|
||||||
|
|
|
|
|
0 |
0 |
|
ε |
|
|
|
|
|
|
||||
|
|
0,188ψ |
2 |
μ(1 |
−ε0 ) |
2 |
|
|
|
|
|
|
|
|
ε0 |
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
||||||||
i0 |
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
= |
|
|
|
|
|
; |
|
|
|
|
i = i0 |
|
|
|
|
, |
||
|
|
2 3 |
|
|
|
|
|
|
ε0 |
− |
|
|||||||
|
|
dэε0 |
|
|
|
|
|
|
|
|
|
ε |
|
где i0 — сопротивление единицы толщины фильтрующего слоя при прохождении че-
рез него чистой жидкости; i — сопротивление единицы фильтрующего слоя с задержанными частицами в любой промежуточный момент времени; ε — удельный объем осадка, накопившегося в фильтрующем слое.
Площадь скоростных фильтров F (в м2) находят по формуле
67