
- •Оглавление.
- •Введение.
- •Аминокислоты.
- •Структура белков
- •Конформация белков
- •Тема: пептиды, белки: их строение, свойства, значение в организме, методы исследования. Физико-химические свойства белков. Пептиды
- •Роль белков в организме человека
- •Методы разделения белков и пептидов:
- •Признаки коллоидного состояния:
- •Сходство растворов вмс и коллоидных растворов:
- •Отличие растворов вмс от коллоидных растворов:
- •Сходство растворов вмс с ионно-молекулярными растворами:
- •Специфические свойства растворов вмс:
- •Анализ мембранного равновесия Доннана
- •Ферменты
- •Отличие ферментов от неорганических катализаторов
- •Строение ферментов
- •Активный центр ферментов.
- •Механизм действия ферментов
- •Специфичность
- •Кинетика ферментативных реакций
- •2. Концентрация субстрата
- •РН среды
- •Активирование ферментов
- •6. Ингибирование.
- •Определение активности фермента
- •Классификация ферментов
- •Трансферазы
- •Гидролазы
- •Изомеразы
- •Лигазы (синтетазы)
- •Тема: ферменты, как биологические катализаторы
- •Классификация ферментов
- •Свойства ферментов
- •Специфичность действия ферментов
- •Активирование и ингибирование ферментов
- •Регуляция путём ковалентной модификации
- •Путь нековалентной модификации
- •Типы ингибирования
- •Конкурентное ингибирование
- •Неконкурентное ингибирование
- •Регуляция путем изменения биосинтеза ферментов
- •Компартментализация (отделение, отсек) в клетке
- •Изоферменты
- •Анализ уравнения Михаэлиса—Ментен:
- •Количественная характеристика активности фермента
- •Количественная характеристика активности ферментов в биологических жидкостях
- •Энзимодиагностика
- •Наследственные нарушения (энзимопатии)
- •Энзимотерапия
- •Липиды. Классификация липидов. Характеристика фосфолипидов и восков.
- •Обмен липидов
- •Ресинтез жирных кислот в стенке кишечника.
- •Транспорт липидов
- •Цикл трикарбоновых кислот (цикл Кребса)
- •Тема углеводы
- •Классификация углеводов
- •Моносахариды.
- •Стериоизомерия моносахаридов.
- •Циклические (полуацетальные) формы моносахаридов.
- •Основные реакции моносахаридов.
- •1. Реакции полуацетального гидроксила.
- •3. Реакции с участием карбонильной группы.
- •Олигосахариды
- •Полисахариды
- •Гетерополисахариды.
- •Промежуточный обмен углеводов в организме
- •Витамины
- •Классификация витаминов
- •Жирорастворимые витамины Витамины группы а (ретинол, антиксерофтальмический)
- •Биологическая роль
- •Витамины группы к (филлохиноны, менахиноны,антигеморрагический)
- •Витамины группы е (токоферол, антистерильный. Витамин размножения)
- •Водорастворимые витамины Витамин в1 (тиамин, антиневрический)
- •Биологическая роль
- •Витамин в2 (рибофлавин, витамин роста)
- •Витамин в6 (пиридоксин, антидермический)
- •Витамин в12 (кобаламин,антианемический)
- •Витамин с (аскорбиновая кислота, антискорбутный витамин).
- •Витамин р (рутин, цитрин, витамин проницаемости)
- •Витамин рр (никотиновая кислота, никотинамид, ниацин, антипеллагрический)
- •Авитаминоз и гиповитаминоз
- •Химия нуклеиновых кислот. Общая характеристика нуклеиновых кислот
- •Химическое строение рнк и днк.
- •Азотистое основание Углеводный компонент Фосфорная кислота
- •П уриновые Пиримидиновые Рибоза Дезоксирибоза
- •Углеводный компонент
- •Азотистое основание
- •Структура нуклеиновых кислот.
- •Вторичная структура днк характеризуется правилом э. Чаргаффа (закономерность количественного содержания азотистых оснований):
- •Тема: обмен нуклеиновых кислот и нуклеотидов в организме человека.
- •Этапы репликации:
- •Транскрипция
- •Этапы транскрипции:
- •Биосинтез белка
- •Регуляция транскрипции. Теория Оперона
- •Тема: энергетический обмен. Цикл лимонной кислоты - цикл трикарбоновых кислот (цтк), цикл Кребса - конечный общий путь окисления белков, липидов, углеводов.Цтк - амфиболический цикл.
- •Цикл лимонной кислоты — цтк — цикл Кребса
- •Энергетическая роль цтк
- •Регуляция цикла Кребса
- •Биоэнергетика. Биологическое окисление Роль кислорода в метаболизме
- •Токсичность кислорода
- •Макроэргические молекулы
- •Нуклеозидтрифосфаты
Структура нуклеиновых кислот.
Имеются 3 уровня структуры.
Первичная структура РНК и ДНК.
Первичная структура у РНК и ДНК одинакова – это линейная полинуклеотидная цепь, в которой нуклеотиды соединены между собой 3/5/ фосфодиэфирными связями, которые образуют остатки фосфорной кислоты между 3/ углеродным атомом одного нуклеотида и 5/ углеродным атомом следующего нуклеотида.
На одном конце полинуклеотидной цепи всегда есть свободный остаток фосфорной кислоты в 5/ -положении. Этот нуклеотид обозначается как 5/ - концевой и считается началом молекулы нуклеиновой кислоты. На другом конце цепи содержится нуклеотид со свободной 3/ - гидроксильной группой. Это 3/ -концевой нуклеотид – конец молекулы. Никаких разветвлений в молекулах РНК и ДНК не обнаружено.
Геном – полное количество ДНК, несущее всю генетическую информацию для данного организма.
Вторичная структура ДНК.
Вторичная структура днк характеризуется правилом э. Чаргаффа (закономерность количественного содержания азотистых оснований):
У ДНК молярные доли пуриновых и пиримидиновых оснований равны:
А+ Г = Ц + Т или (А + Г)/(Ц + Т)=1.
В ДНК количество оснований с аминогруппами (А +Ц) равно количеству оснований с кетогруппами (Г + Т):
А +Ц= Г + Т или (А +Ц)/(Г + Т)= 1
Правило эквивалентности, т.е. А=Т, Г=Ц; А/Т = 1; Г/Ц=1.
Нуклеотидный состав ДНК у организмов различных групп специфичен и характеризуется коэффициентом специфичности:
(Г+Ц)/(А+Т). У высших растений и животных он меньше 1, колеблется незначительно: от 0,54 до 0,98 (АТ-тип ДНК), у микроорганизмов он больше 1 (ГЦ-тип ДНК).
На основании данных рентгеноструктурного анализа и правил Чаргаффа, в 1953 г. Дж. Уотсоном и Ф.Криком предложена модель вторичной структуры ДНК в виде двойной спирали. (см. рабочую тетрадь)
Согласно этой модели, молекула ДНК состоит из 2-х цепей, закрученных в правовращающуюся спираль вокруг одной и той же оси. Азотистые основания находятся внутри, а фосфорные и углеводные компоненты – снаружи.
Диаметр спирали 1,8 нм. Основания образуют прямой угол с осью спирали, расстояние между соседними основаниями – о,34 нм. Шаг спирали 3,4 нм и содержит 10 пар оснований. Полинуклеотидные цепи ориентированы в противоположном направлении (антипараллельны). На одном конце спирали одна цепь имеет 5/ - конец, другая 3/ -конец.
Азотистые основания в молекуле ДНК расположены строго специфично, по принципу комплементарности: А взаимодействует только с Т, Г с Ц, т.е. напротив аденина всегда расположен тимин, напротив гуанина – цитозин. А-Т и Г-Ц называют комплементарными парами оснований.
Вторичная структура ДНК стабилизируется водородными связями и гидрофобными взаимодействиями.
Водородные связи возникают между комплементарными основаниями: между А и Т образуются 2 водородные связи, между Г и Ц – 3 водородные связи (см. рабочую тетрадь с. ). Водородные связи образуются между амино- и кетогруппами комплементарных оснований, а также между атомами N и NH в положении 1 и 3 пуриновых и пиримидиновых оснований соответственно. В этом и состоит комплементарность.
Гидрофобные взаимодействия возникают между соседними основаниями одной и той же цепи, что способствует своеобразной укладке цепи в виде стопок.
В настоящее время обнаружено более 10 конфигураций двойной спирали ДНК. В зависимости от степени ее гидратации различают: А-, В-, С-формы, Д-форма и т.д. с различным числом нуклеотидов на виток и структурой.
В-форма – соответствует модели Уотсона и Крика и наблюдается при влажности 92%. В В-форме ДНК находится, когда выполняет роль матрицы для синтеза ДНК (процесс репликации).
При относительной влажности 70% В-форма превращается в А-форму. Число оснований на виток в ней составляет 11, основания наклонены под углом 20˚ к оси спирали, спираль короче на 25%. В А-форме ДНК находится, когда выполняет роль матрицы при синтезе РНК (процесс транскрипции).
При влажности 66% ДНК приобретает С-форму. В С-форме ДНК находится в хроматине, в комплексе с белками. В ней на виток приходится 9,3 нуклеотида.
Д-форма ДНК содержит 12 нуклеотидов на 1 виток в виде левой спирали. выполняет регуляторную функцию, контролируя экспрессию генов.
Т.о. вторичная структура ДНК динамична и способна к конформационным переходам.
Третичная структура ДНК.
Третичная структура ДНК – это спираль и суперспираль в комплексе с белками. ДНК может существовать в линейной форме (в хромосомах эукариот) и в кольцевой (у прокариот и в митохондриях). Спирализация характеризуется для обеих форм.
Стабилизировано сверхскрученное состояние ДНК ионными связями с гистонами.
Сначала образуются нуклеосомы (структурная единица хроматина), затем цепочка нуклеосом, затем цепочка многократно спирализуется и в результате образуется третичная структура ДНК (длина ДНК хромосомы человека достигает 8 см, а упаковывается так, что умещается в хромосоме длиной 5 нм).
Структура и функции РНК.
В отличие от ДНК, молекула РНК состоит из одной полинуклеотидной цепи, которая спирализована сама на себя, т.е. образует всевозможные «петли» и «шпильки» за счет взаимодействий комплементарных азотистых оснований (вторичная структура). У некоторых вирусов встречаются двуцепочечные РНК, которые несут генетическую информацию аналогично ДНК.
Существуют:
1 – матричные РНК (мРНК);
2 – рибосомные РНК (рРНК);
3 – транспортные РНК (тРНК).
Рибосомные РНК. На долю рРНК приходится 80-90% клеточной РНК. Локализованы в рибосомах, в комплексе с рибосомными белками. Рибосомы состоят из двух частей и представляют собой нуклеопротеины, состоящие из рРНК и белка в соотношении 1:1 (для эукариот) и 2:1 (для прокариот).
Биологическая роль рРНК – являются структурной основой рибосом, взаимодействует с мРНК и тРНК в процессе биосинтеза белка, принимает участие в процессе сборки полипептидной цепи.
У эукариот обнаружено 4 типа рРНК с различным коэф. седиментации: 18S(в малой части рибосомы), а 28S, 5,8S и 5S (сведбергов) – в большой части рибосомы.. Они различаются молекулярной массой (35 000-1 600 000) и локализацией в рибосомах.
Вторичная структура рРНК характеризуется спирализацией цепи самой на себя, третичная – ее компактной укладкой.
Матричные РНК. Матричная РНК составляет 2-3% от всей клеточной РНК, синтезируется мРНК в ядре клетки на матрице ДНК (процесс транскрипции), переписывая с нее генетическую информацию по принципу комплементарности.
ДНК -А-Т-Г-Ц-
ДНК -Т-А-Ц-Г-
мРНК -А-У-Г-Ц-
Затем мРНК поступают в цитоплазму, соединяются с рибосомой и выполняют роль матрицы для биосинтеза белка. Каждой аминокислоте соответствует в мРНК определенная тройка (триплет) нуклеотидов, называемая кодоном этой аминокислоты. Последовательность кодонов в цепи мРНК определяет последовательность аминокислот в белке. Всего может быть 64 кодона. Из них 61 кодон кодирует аминокислоты, а 3 кодона – кодоны терминаторы (терминирующие), которые обозначают окончание белкового синтеза. Существуют также инициирующие кодоны, которые соответствуют первой аминокислоте в белке и чаще всего соответствуют аминокислоте метионину.
Поскольку мРНК несет наследственную информацию о первичной структуре белка, нередко ее называют информационной РНК (иРНК). Каждый отдельный белок, синтезируемый в клетке, кодируется определенной «своей» мРНК или ее участком. мРНК образует несколько двуспиральных «шпилек», на концах которых располагаются знаки (например, ААУААА) инициации (начала синтеза белка) и терминации (окончания синтеза белка).
Т.о. информация о строении белка закодирована в ДНК с помощью генетического кода, который является линейным, непрерывным, триплетным, выражденным. Он является универсальным.
Молекулярный вес мРНК варьирует в широких пределах от 35 000 до нескольких млн. мРНК ранее считались короткоживущими РНК. Для микроорганизмов время жизни мРНК несколько секунд или минут. Но для эукариот – оно может составлять от нескольких часов до нескольких недель.
Транспортная РНК. Составляют 10-20% клеточной РНК.
Функции тРНК:
1 - связывают аминокислоты и транспортируют их в рибосому, где происходит синтез белка;
2 – кодируют аминокислоты;
3 – Расшифровывают генетический код.
Содержатся в цитоплазме. Молекулярный вес от 22 000 до 27 000. Всего существует свыше 60 тРНК.
Каждая тРНК может переносить только 1 строго определенную аминокислоту.
тРНК именуются по названию аминокислот. Например, аланиновая тРНК. тРНК, связывающие одну и ту же аминокислоту, называют изоакцепторными и нумеруют: тРНК1вал, тРНК2вал и т.д.
тРНК содержат много минорных нуклеиновых остатков (около 10%). Они обеспечивают защиту тРНК от действия рибонуклеаз (ферментов), специфичность взаимодействия с переносимой аминокислотой и т.д.
Вторичная структура всех тРНК имеет форму «клеверного листа». В его составе различают:
акцепторный стебель – к нему присоединяется аминокислота.
Псевдоуридиловая петля – используется для связи тРНК с рибосомой.
Дополнительная петля – назначение неизвестно.
Антикодоновая петля – содержит антикодон (триплет нуклеиновых остатков, которые комплементарны кодону мРНК, с его помощью тРНК соединяется с мРНК);
Дигидроуридиновая петля – обеспечивает связывание тРНК со специфическим ферментом (аминоацил-тРНК-синтетазой), который соединяет аминокислоту с тРНК .
Стабилизируется вторичная структура водородными связями между комплементарными основаниями.
Третичная структура тРНК имеет неправильную Г-образную форму. стабилизирована водородными и др. связями.