Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
7. Бах Морис. Архитектура операционной системы...doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
6.59 Mб
Скачать

8.1.6 Работа в режиме реального времени

Режим реального времени подразумевает возможность обеспечения достаточной скорости реакции на внешние прерывания и выполнения отдельных процессов в темпе, соизмеримом с частотой возникновения вызывающих прерывания событий. Примером системы, работающей в режиме реального времени, может служить система управления жизнеобеспечением пациентов больниц, мгновенно реагирующая на изменение состояния пациента. Процессы, подобные текстовым редакторам, не считаются процессами реального времени: в них быстрая реакция на действия пользователя является желательной, но не необходимой (ничего страшного не произойдет, если пользователь, выполняющий редактирование текста, подождет ответа несколько лишних секунд, хотя у пользователя на этот счет могут быть и свои соображения). Вышеописанные алгоритмы планирования выполнения процессов предназначены специально для использования в системах разделения времени и не годятся для условий работы в режиме реального времени, поскольку не гарантируют запуск ядром каждого процесса в течение фиксированного интервала времени, позволяющего говорить о взаимодействии вычислительной системы с процессами в темпе, соизмеримом со скоростью протекания этих процессов. Другой помехой в поддержке работы в режиме реального времени является невыгружаемость ядра; ядро не может планировать выполнение процесса реального времени в режиме задачи, если оно уже исполняет другой процесс в режиме ядра, без внесения в работу существенных изменений. В настоящее время системным программистам приходится переводить процессы реального времени в режим ядра, чтобы обеспечить достаточную скорость реакции. Правильное решение этой проблемы — дать таким процессам возможность динамического протекания (другими словами, они не должны быть встроены в ядро) с предоставлением соответствующего механизма, с помощью которого они могли бы сообщать ядру о своих нуждах, вытекающих из особенностей работы в режиме реального времени. На сегодняшний день в стандартной системе UNIX такая возможность отсутствует.

Рисунок 8.6. Пример планирования на основе справедливого раздела, в котором используются две группы с тремя процессами

8.2 Системные операции, связанные со временем

Существует несколько системных функций, имеющих отношение к времени протекания процесса: stime, time, times и alarm. Первые две имеют дело с глобальным системным временем, последние две — с временем выполнения отдельных процессов.

Функция stime дает суперпользователю возможность заносить в глобальную переменную значение глобальной переменной. Выбирается время из этой переменной с помощью функции time:

time(tloc);

где tloc — указатель на переменную, принадлежащую процессу, в которую заносится возвращаемое функцией значение. Функция возвращает это значение и из самой себя, например, команде date, которая вызывает эту функцию, чтобы определить текущее время.

Функция times возвращает суммарное время выполнения процесса и всех его потомков, прекративших существование, в режимах ядра и задачи. Синтаксис вызова функции:

times(tbuffer)

struct tms *tbuffer;

где tms — имя структуры, в которую помещаются возвращаемые значения и которая описывается следующим образом:

struct tms

/* time_t — имя структуры данных, в которой хранится время */

 time_t tms_utime; /* время выполнения процесса в режиме задачи */

 time_t tms_stime; /* время выполнения процесса в режиме ядра */

 time_t tms_cutime; /* время выполнения потомков в режиме задачи */

 time_t tms_cstime; /* время выполнения потомков в режиме ядра */

;

Функция times возвращает время, прошедшее "с некоторого произвольного момента в прошлом", как правило, с момента загрузки системы.

#include ‹sys/types.h›

#include ‹sys/times.h›

extern long times();

main()

 int i;

 /* tms — имя структуры данных, состоящей из 4 элементов */

 struct tms pb1, pb2;

 long pt1, pt2;

 pt1 = times(&pb1);

 for (i = 0; i ‹ 10; i++) if (fork() == 0) child(i);

 for (i = 0; i ‹ 10; i++) wait((int*) 0);

 pt2 = times(&pb2);

 printf("процесс-родитель: реальное время %u в режиме задачи %u в режиме ядра %u потомки: в режиме задачи %u в режиме ядра %u",

        pt2 - pt1, pb2.tms_utime - pb1.tms_utime, pb2.tms_stime - pb1.tms_stime, pb2.tms_cutime - pb1.tms_cutime, pb2.tms_cstime - pb1.tms_cstime);

child(n)

int n;

 int i;

 struct tms cb1, cb2;

 long t1, t2;

 t1 = times(&cb1);

 for (i = 0; i ‹ 10000; i++);

 t2 = times(&cb2);

 printf("потомок %d: реальное время %u в режиме задачи %u в режиме ядра %u",

          n, t2 - t1, cb2.tms_utime - cb1.tms_utime, cb2.tms_stime - cb1.tms_stime);

 exit();

Рисунок 8.7. Пример программы, использующей функцию times

На Рисунке 8.7 приведена программа, в которой процесс-родитель создает 10 потомков, каждый из которых 10000 раз выполняет пустой цикл. Процесс-родитель обращается к функции times перед созданием потомков и после их завершения, в свою очередь потомки вызывают эту функцию перед началом цикла и после его завершения. Кто-то по наивности может подумать, что время выполнения потомков процесса в режимах задачи и ядра равно сумме соответствующих слагаемых каждого потомка, а реальное время процесса-родителя является суммой реального времени его потомков. Однако, время выполнения потомков не включает в себя время, затраченное на исполнение системных функций fork и exit, кроме того оно может быть искажено за счет обработки прерываний и переключений контекста.

С помощью системной функции alarm пользовательские процессы могут инициировать посылку сигналов тревоги ("будильника") через кратные промежутки времени. Например, программа на Рисунке 8.8 каждую минуту проверяет время доступа к файлу и, если к файлу было произведено обращение, выводит соответствующее сообщение. Для этого в цикле, с помощью функции stat, устанавливается момент последнего обращения к файлу и, если оно имело место в течение последней минуты, выводится сообщение. Затем процесс с помощью функции signal делает распоряжение принимать сигналы тревоги, с помощью функции alarm задает интервал между сигналами в 60 секунд и с помощью функции pause приостанавливает свое выполнение до момента получения сигнала. Через 60 секунд сигнал поступает, ядро подготавливает стек задачи к вызову функции обработки сигнала wakeup, функция возвращает управление на оператор, следующий за вызовом функции pause, и процесс исполняет цикл вновь.

Все перечисленные функции работы с временем протекания процесса объединяет то, что они опираются на показания системных часов (таймера). Обрабатывая прерывания по таймеру, ядро обращается к различным таймерным счетчикам и инициирует соответствующее действие.